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Summary

We begin this report with a survey of direction-finding algorithms restricted to the narrowband
case in element space. We then set out to search for a simple satisfactory stress measure to
direction-finding algorithmns applied to scenarios with two sources. The word "stress" for a scenario
is used to indicate the difficulty that an algorithm has in determining the direction of arrival
of each of the two sources. A scenario is said to be "stressful" to an algorithm if it causes
difficulty in resolving the sources or in determining their directions of arrival. The apparent lack
of understanding of the effect of phase difference between two signals in direction-finding made
such an ideal stress measure illusive. Regardless of all its deficiencies, eigenvalue ratio is still a
useful measu~c in summarizing stressing factors in many aspects for two-arrival direcion-finding
scenario.

Eigenvalue weighting appears in some noise subspace methods, in parametric signal subspace
fitting methods, and in nonparametric subspace adaptive nulliiig beamforming. For a two-source
array-processing scenario, normalized largc and small eigenvalues A, and A2 are reduced to forms
depending only on a real triplet: phase-dependent variable , phase-independent variable 77, and
power ratio 21. The pairs ( , /) are conined to an isosceles-like region. We characterize

* this isoscelks-like region and the many-to-one mapping from the Caitesian product of the
temporal and spatial correlation unit-disks onto this region,

* the behavior of the eigenvalues and their ratios as functions of the real triplet both analyt-
ically and graphically with respect to direction-finding.

The main contribution of this work is a manageable presentation of a compact map showing
Al, A2, and A as functions of , r, and 11 over all possible scenarios. This enables one to seeA 2 Ir2

the relative positions among different scenarios. We also present some easy-to-remember formulas
that enable one to exercise "back-of-envelope" assessment of scenarios.

The small eigenvalue is shown to diminish qualitatively and quantitatively for two-arrival
scenarios increasingly stressed with high temporal and/or spatial correlations. The special case of
equal-strength signal arrivals (a = 1), also important in low-angle radar tracking, shares many
rich structures of general a. The equal-strength case also has several additional unique features
for signal eigenvalue ratio '\, which is important in direction-finding:

e an extra 6 dB over the vertical axis =0 as compared to the general E, case,
r2

* a 6-dB increase for equipower arrivals highly correlated both temporally and spatially from
changing the angle difference between the two unit-disk vectors from 90°(orthogonal wave-
forms) to 0°(in-phase waveforms),

* the lower left corner of the isosceles-like triangle is a point of discontinuity for the eigenvalue
ratio -'

The developed results are used to assess some scenarios used by Cadzow and Ottersten.
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Chapter 1

Introduction

High-resolution algorithms for direction-finding (DF) using g~neral array configurations are still
maturing. For the parametric approach to the narrowband (NB) problem in element space, some
consensus appears to be emerging. Therefore, the scope of this report on direction-finding is
restricted to the narrowband case in element space.

Because of the different scenarios used among the reported analytic or simulation performance
results, the evaluation of the various high-resolution NB DF algorithms is made difficult by the lack
of a common footing in relating and assessing them. The possible combination of all parameters to
specify scenarios to test and evaluate candidate algorithms is just too vast. Even if one conducts
such an exhaustive evaluation, the effective presentation of rs.lts poses another problem. The
lack of any simple yardstick to measure some sort of scenario stress makes it difficult to effectively
grasp the different reported results and to form a broad brush mental picture summarizing the
very complicated scene. The word "stress" for a scenario is used to indicate the difficulty that an
algorithm has in determining the direction of arrival of each of the two sources. A scenario is said
to be "stressful" to an algorithm if it causes difficulty in resolving the sources or in determining
their directions of arrival. From a DF user's point of view, it is highly desirable to have some
guidelines deveioped to help draw an envelope of scenario parameters corresponding to a potential
stressful operating environment.

We limit the scope of our attempt to search of yardsticks measuring stress of DF scenarios
to only two sources. This is because of the ease of obtaining a measure to evaluate scenarios by
dealing with only solutions of quadratic characteiistic equtior, aiiu thaL l, . .hc rcpcrted sim-
ulation results in the literature involve only two-source scenarios. Even then some non-negligible
effort is required to display such results.

So far, we found such a stress measure illusive. The effect on direction-finding of the phase
difference between two signals' source amplitudes is apparently not a well-understood subject.
When this phase difference does not come into play in the eigenvalue expressions, such as when
the two arrivals are temporally uncorrelated or spatially orthogonal, eigenvalue ratio seems to be
a plausible stress measure. A large value of the eigenvalue ratio will reflect the cumulative effect
of large magnitudes of the normalized spatial and temporal correlation coefficients and the power
ratio of the two arrivals. Most reporting on the phase difference effect is for the low-angle radar
tracking problem with two closely spaced, coherent, equipowered plane-wave arrivals impinging on
a uniform line array. In examining candidates for stress measures, we have considered eigenvalue
ratio, Cramer-Rao lower-bound (CRLB), and asymptotic performance results of some subspace
algorithms for such scenarios. Somehow we cannot reconcile all the differences among these
candidates together with our physical intuition.
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In conducting the illusive search for a simple satisfactory stress measure for scenarios to
direction-finding algorithms, we start the main body of chapter 1 with a survey of narrowband
DF algorithms for general sensor arrays in element space. This includes a taxonomy table, char-
acterization and asymptotic performance of the main algorithm categories, and the initialization
procedure, which is the critical item of most high-resolution algorithms. Then, the idea of for-
mulating guidelines desired for DF scenario design is developed for the following: too many
parameters for a two-source DF scenario for a given sensor array, simple map(s) to show relative
positions of scenarios and yardstick for measuring stress of scenarios to direction-finding algo-
rithms, and dominant eigenvalues chosen as the key items. Next, we discuss eigenvalues for the
noise-free covariance matrix of two discrete sources by considering the following issues: treatment
of this subject in Huidson's text[23], the original 6-dimensional parameter space for a given sensor
array under the noise-free assumption, compact map(s) - another many-to-one reduction, and
3-d map with the power ratio between the two arrivals as third coordinate.

Chapter 2 addresses the notion of stress to direction-finding algorithms and scenarios. First.
the following three main sources for the signal eigenvalue spread or causes for small signal eigen-
values are reviewed: high spatial and/or temporal correlation and/or high contrast of signal
strength between the two arrivals. Next, the eigenvalues in weighting expressions are discussed
for three categories: noise subspace methods, paidmetric signal subspace fitting methods, and
nonparametric subspace adaptive nulling beamforming. Then, tile drawbacks of the oversimplify-
ing stress-measuring yardstick using condition numbers are mentioned: infinite condition number
for all 100%-correlated two arrivals, equal condition numbers corresponding to different CRIBs,
CR1B not appealing to intuitive expectation, and the redeeming value for signal eigenvalue ratio.
At the end, we explain the reasons why special treatment is given for equal-power arrivals.

During the course of this search of a good stress measure, we thoroughly characterized the
eigenvalues and their ratio for two-source scenarios and came up with an effective way to present
results. Chapter 3 is about the analytical characterization of eigenvalues for two arrivals. Chap-
ter 4 is about the fractional beamwidth separation between two plane waves impinging on a
uniform line array (ULA). Chapter 5 is about the plots of signal eigenvalues and their ratio in (ill
scal,. The large and small eigenvalues as well as their ratio are functions of a phase-dependent
variable and a phase-independent variable, both derived from the normalized spatial and temporal
correlation coefficients, and the power ratio between the two arrivals. The main contribution of
this report is a manageable presentation of a compact map showing these three functions over all
possible scena.rios. This enables one to see the relative positions among different scenarios. We also
present some easy-to-remember formulas that enable us to exercise back-of-eiveitup, assessment
of scenarios during presentations or discussions.

These developed results are used to asses. sonle scenarios used by Cadzow and Ottersten in
chapter 6. Chapter 7 serves to conclude the main findings of this the repot.

1.1 A Brief Survey of Narrowband DF Algorithms for General
Sensor Arrays in Element Space

For the reader interested in the I)F algorithms for general sensor arrays, a classification chart of
some of the candidate narrowband algorithms is helpful. To this end, we provide table 1.1. Somc
brief discussions of this taxonomy table are provided in the following subsections. They are about
characterization, performance, and implementations.

2



1.1.1 A Broad-Brush Taxonomy Table

Over-simplification and oversight is unavoidable, but this table serves as a starting point. Hope-
fully, the discussion will remedy some of the simplistic presentation. The reader is cautioned
not to read too much into the performance comparison parts of this table. A single measur,
of resolution performance, sometimes based on asymptotic performance expressions n)nd often
evaluated subjectively, using symbols + or -, is employed here to conipare entries in the same
columns or rows. This appears strange as the report discusses a multitude of scenarios for even
a two-arrival case. The measure is even less meaningful when entries not in the same colunii or
row are compared. A broad-brush table such as this, together with only a few pages of discussion.
definitely will not suffice for some workers in the field. T he complexity involved in just comparing
the simulation work from two researchers can be inferred by reading chapter 6. which is aboit
some of Cadzow's and Ottersten's scenarios. One alternative is a similar large-scale study of such
scope as the 1984 MIT/Lincoln Lab report [3].

1.1.2 Characterization of Some Algorithms

Ottersten and Viberg [34,35,36,38,59,60,61] jointly formulated a unified subspace fitting frame-
work that relates several existing methods including Conventional BeamForming (CLIF), MUltiple
Signal Classification (MUSIC), multidimensional MUSIC, and Deterministic Maximum Likelihood
(Det-ML). Directions of arrivals (DOAs) are estimated individually by CBF and MUSIC; i.e.. by
searching over a grid in a nonparametric fashion as is done by the Minimum Variance Distortion-
less Response (MVDR) Adaptive Beamforming (ABF) algorithms. DOAs are estimated jointly by
multidimensional MUSIC and I)et-ML by using parametric methods without a grid. Those using
a grid cannot deal with coherent (100% correlation) arrivals for general array configurations.

The generalized MUSIC by Ferrara and Parks [18] for diverse polarizations, and by llaber and
Zoltowski [21] for coherent multipath, is a hybrid of the above two categories but is still of the
spectrum type: i.e., the search is over a product )OA parameter space. The dimension of th,
product space depends on the maxi muin number of multipaths modeled for the emitters within
the coverage. For each grid point in the product domain, we consider all linear combinations of

known inultipatlhs corresponding to the product angle coordinates. The linear combination that
has the minimum projection onto the noise subspace is found. Tht reciprocal of the magnitude-

squared of this quantity is defined as the spectrum. The spectrun at each grid point involves
the computation of the smallest generalized eigenvalue of a small matrix, the size of which is
the number of multipaths modeled. The display and extraction of paraimeters for the generalized
MUSIC are difficult when the dimension of the underlying parameter space for the product domain
exceeds two, i.e., except for the simplest azimuthal-only scenarios having at most two nultipaths
from each emitter.

Even though we try to limit consideration to algorithms applicable to general array configura-
tions and signal models, an exception is made for t(timation of S'ignal Parameters via Rotational
Invariance Techniques (ESPRIT) [45,65]. This is because of the many attractive features of ES-
PRIT for doublet array configurations including the case of p!ane-wave arrivals impinging on
a ULA. The main features are the simplicity of computation and the ability to provide signal
parameter esirnates in the absence of detailed knowledge of the sensor array characteristics. Be-
cause of the misconception that ESPIRIT avoids the calibration problem entirely, Zoltowski and
Stavrinides [65] comment that the required calibration involved in the doublet arrays is not a
trivial task. The inherent redunlancy built into the ideal ESPRIT array structure, which causes
the degraded resolution for a Ll.,\ using Root MI'SIC, can compensate for imperfect calibration
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so that corresponding sensors in the doublet arrays need be only approximately identical [65].
There are some convergence in thoughts about the MVDR, and the subspace or MUSIC

algorithms, especially in the sonar community. This is discussed later in subsection 2.2.3.

1.1.3 Asymptotic Performance

The asymptotic properties of the parameter estimates from a general weighted fitting criterion
were derived by Ottersten and Viberg, and by applying an appropriate weighting and parame-

terization, they obtained distributions of different estimators. They minimized the asymptotic
variance with respect to the subspace weighting, leading to a novel method termed Weighted

Subspace Fitting (WSF). They also examiied the asymptotic behavior of the Stochastic Maxi-
mum Likelihood (Sto-ML) and the distribution is shown to be the same as for WSF. Therefore,
WSF achieves the best resolution performance attainable by Sto-ML, which requires a nonlinear
(d2 + d + 1)-dim optimization where d is the number of modeled arrivals for azimuthal problems,
with the much smaller burden of only a d-dim one similar to that of Det-ML. For uncorrelated
arrivals such as in matched-field processing (MFP), the d2 term is reduced to d. For a plane-wave
model with both azimuthal and elevation measurements, the original linear term d becomes 2d.

The MUSIC algorithm is a "one arrival at a time" search of the parameter space, and this
inherently leads to a large bias due to the finite sample, which dominates the variance until the
amount of data is very large. The multidimensional techniques (those using joint estimation of
multiple arrivals) have a smaller bias and the asymptotic expressions can even be used for smaller

samples.
The asymptotic performance analysis by Ottersten and Viberg patterned after Stoica and

Nehorai [53,54,55] who had many results similar to those of Ottersten and Viberg. The Signal
Eigenvector (SE) approach by Cadzow [6,7] uses only dominant eigenvectors. Therefore, according
to Ottersten (private communication with the author of this report), its finite sample performance
has nonzero bias and the mean square error may have the advantage of those of the reduced
rank principle by Scharf and Tufts [47,48]; i.e., bias is traded for reduced variance. A paper
has been submitted by H. Wang and G.H. Wakefield, on nonasymptotic performance analysis of
eigenstructure-based direction-of-arrival estimation using perturbation theory.

1.1.4 Initialization: The Critical Item in Implementation

The jointly estimating types of algorithms, with the exception of Stochastic Maximum Likelihood
Estimation (Sto-MLE), involve fitting a linear combination of steering vectors of unknown DOA
parameters to data. They all solve a separable nonlinear least squares problem [20,26,46] or
its equivalent, sometimes called reduced or concentrated form. They differ only in the right-

hand sides of the fitting equations. For Deterministic Maximum Likelihood Estimation (Det-
MLE), the right-hand sides are snapshot data vectors. For SE and WSF, the right-hand sides

are the unweighted and weighted signal eigenvectors respectively. They can differ in performance
considerably. Computationally, these approaches are similar to each other in that some Gauss-

Newton algorithms, or their approximations, can solve the parameter fitting problem very well if a
good initial estimate is available; i.e., one close to one of the global minimum (nonunique to within
permutations). Note that the DOA parameters for the multiple emitters are estimated jointly as

they correspond to a single point in the parameter space over which the least squares problem

is carried out. This is contrasted to the spectrum estimation methods where each emitter's (or
arrival's) parameter values are read off one at a time.



Getting a good initial estimate is definitely no small feat, as the cost function of the global
minimum search has many relative or local minima. The abstract by Degerine as announced in
the manuscripts in review of the August 1990 IEEE ASSP Transaction [14] has the following:
The likelihood function, in estimating a Toeplitz covariance matrix, can present a local maximum
close to the global maximum. An analytical proof is conducted for the matrices of order 3 and
numerical examples are given for orders 3, 4, and 5.

Both Ottersten and Viberg, and Cadzow used the initialization scheme by Ziskind and Wax [63]
to tackle this critical problem. The major share of the overall direction-finding computation is
essentially from this initialization. Staxting from a CBF to choose the first strongest arrival, the
Gram-Schmidt orthogonal procedure is successively applied to form (multiple) null(s) at previously
selected arrival(s) [23, pages 41-46] to choose the next strongest arrival. In a two-signal scenario
we sized for azimuthal and elevation angle measurements for a Mill-cross array, the initial estimate
is 99% of the total computation count.

There have been published works promoting the use of Expectation-Maximization (EM) algo-
rithm or its variants for the direction-finding problem. While this was met with skepticism during
off-the-record discussions, as usual such skepticism was not openly reported. But the recent dis-
sertation by Wu [62] shows, through both simulation and theoretical analysis, that conventional
methods such as the gradient and the Newton methods have more desirable performance in (local)
convergence than the EM algorithm.

Note that the EM algorithm and its variant depend equally on the choice of a good initial
estimate as do the more conventional methods. In fact, some of these EM numerical experiments
such as in Wu's dissertation [62] used exactly the same Ziskind and Wax's algorithm to find an
acceptable initial estimate. In a recent paper, Ziskind and Wax [64] incorporated some a priori
periodicity structural information of the spatial covariance function for a ULA with uncorrelated
arrivals in a Det-ML scheme. They obtained higher resolution than MUSIC but used these
"lower" resolution algorithms to initialize the EM method. (Interestingly, Ziskind and Wax did
not use the initialization scheme bearing their own names.) Lo, Nagaraj, and Rukhin [31] also
used the Ziskind and Wax [63] initialization scheme in their DF algorithm using cyclic regression
for WSF. While their claim of great reduction of computational complexity is highly debatable,
they obtained interesting results by modifying Det-ML to achieve an asymptotically equivalent
expression of the WSF criterion. We are somewhat sold on the principle of rank-reduction and
still consider the rank-reduced version of the original WSF as the favored baseline candidate.

As the initialization is where resource should be allocated and the description of the most
commonly used Ziskind and Wax's algorithm was terse, we characterize it here to provide insights.
Hopefully, someone can provide less expensive alternatives in the future. Starting from a CBF to
choose the first strongest arrival, the initialization continues in a recursive fashion using successive
adaptive nulling. Suppose k-I strongest arrivals have been selected. The next or the k-th strongest
arrival is selected from the highest peak of the next adaptive nulling spectrum in the following way.
The weight vector of the adaptive nulling at each grid point is made orthogonal to the steering
vectors of all the k-1 strong arrivals previously selected to produce a distortionless response for
an arrival with the DOA parameters corresponding to this grid point. Because of the adaptive
nulling application, the resolution of this initialization is at least medium high, so a grid finer than
that for the CBF is needed. Such orthogonal beamforming effectively subtracts out strong signals
from sensor data by using orthogonal projection without performing the dangerous subtraction
of large numbers. Ziskind and Wax used a projection matrix update formula based on sequential
one-step application of the Gram-Schmidt procedure. As the simplicity of this algorithm derives
from initializing or updating only one source's DOA parameters at each adaptive nulling scan, it
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is similar to the coordinate descent method well-known in multivariate optimization. The original
paper by Ziskind and Wax went beyond just initialization. The same procedure was proposed to
continue cyclically, i.e., wrapping around the source indices: 1,... , d, if d contacts are modeled.
This DF algorithm proper has not been received well because of the exceedingly slow convergence
rate, which is no surprise given the reputation of coordinate descent methods. However, the
similarity between the coordinate descent and Ziskind and Wax's methods stops here, as Ziskind
and Wax's initialization alms at a global multivariate search while coordinate descent method
does not.

Some potential improvements on the Ziskind and Wax initialization scheme are obvious. For
those sources interfering with each other at most marginally because of wide spatial separations
and the lack of strength contrast, one may entertain the idea of selecting them simultaneously in
one adaptive nulling scan. On the other hand, for a pair of nearby sources interfering with each
other within a mainlobe, a fixed grid spacing throughout the sequential orthogonal beamforming
may not serve the purpose well. We may refine the grid spacing near the selected strong sources
so that potentially present nearby sources may be selected. We may also perturb the grid system
locally by offsetting some grid lines because we cannot reuse for later adaptive nulling scans those
old grid points already occupied by selected strong sources.

The delineation shown in the taxonomy chart between subspace DF and ABF is of broad-brush
nature. For MUSIC-type algorithms, there are proposed implementations without the need to
perform eigen-decompositions. The works by Munier and Delisle [33], Reilly, Chen, and Wong [43],
and Friedlander [19] all appeared in 1988 within a short duration. On the other hand, the traffic
is not just one-way. Clark and Roberts [12] advocated using rank-one eigenstructure updating in
realtime ABF.

1.2 A Yardstick to Measure Stress of a Two-source Scenario

Exacting on a DF Algorithm

1.2.1 Guideline Desired for DF Scenario Design

From the perspectives of High-Frequency Direction-Finding (HFDF) system development and the
user's point of view, it is important to test and evaluate the various algorithms against realistic
scenarios by using either measured or simulated data. These scenarios can be used to evaluate
the relevancy and deficiency of the basic assumptions underlying algorithm development, and
to calibrate simulation results. The cost of collecting measured data determines the number of
scenarios possible. Therefore, guidelines are needed to select scenarios to meet the time and
budget constraints for data collection and postanalysis.

1.2.2 Too Many Parameters for Two-Source DF Scenarios for a Given Sensor
Array

Even for highly idealized scenarios with just two discrete sources and a given array with perfectly
specified calibration, there are too many parameters to be exhaustively covered. These parameters
are the two signal-to-noise ratios (SNRs), number of snapshots, source correlation coefficient, and
DOAs of sources.

As a real data set is difficult to obtain and the understanding of algorithms are still maturing,
a performance study using simulation is the only vehicle available for most algorithm investiga-
tors. For each chosen set of the above mentioned parameters, a large Monte Carlo simulation is
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needed to evaluate each candidate algorithms with their various algorithm settings. Analytical
performance predictions, when available, can significantly reduce the cost of such Monte Carlo
simulations and sometimes provide understanding of the algorithms not possible to obtain by
simulation. Even then, the number of possible scenarios makes comparison of algorithms difficult.

1.2.3 Simple Map(s) to Show Relative Positions of Scenarios and Yardsticks
for Measuring Stress of Scenarios to Direction-Finding Algorithms

Typically, each author of a particular algorithm tends to present scenarios favorable to the al-
gorithms he or she (re)invented. Objectivity and modesty is not pervasive. Even for the many
well-conducted comparisons separately conducted, it is difficult to relate these seemingly "apple
and orange" scenarios. Because of the bodies of reported results available in the literature and
the cost of duplicating such tests for even limited standardized scenarios, we settle for a com-
bination of simple map(s) and a realistic yardstick. We mentioned earlier that there are too
many parameters to be covered for even a two-source scenario. The compact map or maps will
enable us to show, on some common footing, the relative positions of the noise-free version of
the various scenarios already reported or yet to be used. The yardstick is intended for measuring
the stress factor of the scenarios presented to the DF algorithms already reported or two-source
simple scenarios to be planned in the future. Such a measure does not account for the cost issues,
such as operation count or implementation ease, which are very important algorithmic issues in a
DF system. But it connects to the issues related to resolution or standard deviation of the DOA
estimates when the noise floor is considered. The relative level of the noise floor is determined by
the SNR and the number of snapshots available.

Hopefully, we can relate a sonar scenario using a 3-d random array with azimuth and eleva-
tion angle measurements reported in one publication to a HF scenario using ULA with azimuth
measurement only reported in another publication. We leave the actual performance evaluation
of the various candidate algorithms to either analytical or numerical methods reported or yet to
be carried out. What we provide is a common footing for comparing the noise-free versions of
one scenario to another using a stress measure.

1.2.4 Dominant Eigenvalues Chosen as the Key Items

The key components of a DF problem are the detection and estimation of dominant arrivals.
Evidence appeared recently that the WSF approach is the leading candidate for a baseline high-
resolution HFDF algorithm for a general sensor array. Furthermore, Viberg and Ottersten have
provided a unified frame for the many subspace and Det-MLE algorithms.

The various algorithms are different in this unified frame in the weights used. These weights
are expressions of the eigenvalues of the data covariance matrices. To this end, we investigated
the eigenvalues for noise-free two-source problems.

1.3 Eigenvalues for the Noise-Free Covariance Matrix of Two
Discrete Sources

1.3.1 Treatment of this Subject in Hudson's Text

Hudson's text on ABF contains a four-page section[23, pages 52-55] on the eigenvalues for the data
covariance matrix of two discrete sources. fie provides the general formula of the two eigenvalues
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and some special case treatment. Apparently, eigen-decomposition methods were not mature
then, the treatment did not realize its full potential. Here we interpret Hudson's expressions
differently and use graphs from our yardstick's point of view to provide compact maps to relate
the various scenarios and to provide a "stress" measure that can ultimately cause some algorithms
to break down in the standard deviation performance of their DOA estimates. We adhere as much
as possible to Hudson's original notations in his four-page treatment.

1.3.2 The Original Six-Dimensional Parameter Space for a Given Sensor Array
under the Noise-Free Assumption

For a given sensor array with noise-free assumption for two sources, the eigenvalues depend upon
the following six parameters:

" 7r1 and r2 , signal powers for signals 1 and 2 with 7r > 7r2

" p, normalized multipath correlation coefficient between the two signals' complex amplitude,
a complex number constrained on a unit-disk,

S0, normalized spatial correlation coefficient between the two arrivals' steering vectors, also
a complex number constrained on a unit-disk.

For simplicity, we may assume that the eigenvalues have been scaled with respect to the
product of the number of sensors and 7r2. This way, we reduce the number of parameters to
five; i.e., a and an element from a four-dimensional region formed by the Cartesian product of

112

two unit-disks. We have achieved a many-to-one mapping from the set of all possible noise-free
scenarios to the admissible set of five parameters.

While we let the point on each unit-disk be arbitrary, this may not be the case for specific
scenarios. In the case of the spatial correlation disk for a ULA with a given number of elements,
the normalized complex inner product of two steering vectors is a (real) sinc function with an
associated phase term. The modulus and argument are related in some way and together trace
out a curve on the polar plot on the unit-disk. Such curves depend upon the number of sensors
used. Similar cases may be made on the multipath correlation unit-disk, perhaps by using some
argument from ray-tracing or other propagation models. Also, we will see that the stress factor
is not a strong function of the phase terms when the strength ratio is away from unity.

While this mapping from an arbitrary sensor scenario to a five-dimensional data point in the
parameter space accomplishes a significant reduction, it is still not easy to gain insight of the
problem. Hudson considered some important special cases, but several important features were
left out.

1.3.3 Compact Map(s): Another Many-to-One Reduction

In the following, we provide an additional many-to-one mapping such that for a given value of the
strength ratio E, the Cartesian product of the two unit-disks can be mapped into an isosceles-likeIr2'

region in two new parameters. The two new parameters are:

= jpj 1cos(argp - arg 4),

= (1 - p 1)(1 - 112).

For convenience, we call 77 the phase-independent variable and the phase-dependent variable.
The rationale for the names is provided in section 3.1.
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Note the symmetry between p and 0 in the above expressions. Given 7r, and r2, they are the
only expressions needed in computing the general formula for the two eigenvalues. These two new
parameters are not entirely independent of each other as will be explained in detail later. This is
in contrast to the original six parameters, which could be varied independently with some minor
qualifying remarks.

We can further identify points corresponding to the following four special cases that were
pointed out by Hudson:

" Arrivals 0% correlated with respect to both multipath and steering vectors,

" Arrivals 0% correlated with respect to either multipath or steering vectors but not to both,

" Arrivals 0% correlated with respect to either multipath or steering vectors and 100% corre-
lated with respect to the other,

" Constructive interference with the two arrivals 100% correlated with respect to both multi-
path and steering vectors with cosine term +1.

Because of the nature of this many-to-one mapping, the same ( ,i) point can come from several
different special cases in the original four-dimensional parameter region that is a Cartesian product
of two unit-disks. For example, the point ( , 77) = (0,0) corresponding to the special case:

Arrivals 0% correlated with respect to either multipath or steering vectors and 100%
correlated with respect to the other,

also corresponds to the folloring special case:

"Quadrature summed" interference with the two arrivals 100% correlated with respect
to both multipath and steering vectors with zero phase-difference term; i.e., the two
multipath sources are in the same direction but are 900 out of phase.

The vertical symmetry line, = 0, corresponding to the special cases:

Arrivals 0% correlated with respect to either multipath or steering vectors but not to
both

also corresponds to the following special cases:

Arrivals with the phasor directions on the two unit-disks perpendicular to each other;
i.e., argp - arg4 = 90'.

Hudson also ignored the important special case:

Destructive interference with the two arrivals 100% correlated with respect to both
multipath and steering vectors and with the cosine term -1.

The whole baseline of the isosceles-like region can be interpreted as special cases with the
two arrivals 100% correlated with respect to either multipath or steering vectors. It can also
be interpreted as special cases with the two arrivals 100% correlated with respect to both the
multipaths and steering vectors in addition to having a proper valued cosine term. We note that
Hudson unnecessarily restricted this just mentioned special case to the single point corresponding
to the constructive interference.
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We also provide the characterizations with respect to the cosine term in the c-definition. The
right-half of the isosceles region corresponds to arrivals with the phase on the two unit-disks
differing less than 900. The left-half of the isosceles region corresponds to arrivals with the phase
on the two unit-disks differing more than 900.

Later in figure 3.2, we will see that Hudson's textbook presented 4 out of the 17 characteriza-
tions shown there. These 4 cases are denoted by asterisks.

1.3.4 A 3-D Map with Power Ratio " as the Third Coordinate?

We can add the ratio f as the third coordinate. However, the observations made after examining

the three surfaces of A1, A2, and their ratio indicate that their dependence of A on the ratio !1 isessentially translational in the dB scale especially away from the unity ratio base plane. Therefore,

the treatment of the parameter El should be handled more economically as an additive term in
W2

the dB scale. In other words, there is no need to go to a three-dimensional map, if ever possible.
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Chapter 2

In Search of a Simple Stress
Measure for Direction-Finding
Algorithms and Scenarios

We will first discuss the three main sources for the signal eigenvalue spread or causes for small
signal eigenvalues. Next, we elaborate on eigenvector weighting exp, isioub. iii noise subspace
methods, in parametric signal subspace fitting methods, and in nonparametric subspace adap-
tive beamforming. Finally we mention the drawbacks of oversimplifying the stress measuring
yardstick: infinite condition number for all 100%-correlated two arrivals, equal condition num-
bers corresponding to different Cramer-Rao lower bounds (CRLBs), and CRLB not appealing to
intuitive expectation.

2.1 The Three Main Sources for the Signal Eigenvalue Spread
or Causes for Small Signal Eigenvalues

Schmidt's dissertation qualitatively pointed out the following three stressing factors to a direction-
finding algorithm. For small- or medium-sized sensor arrays, the resolution is not sufficiently high
so we can have unresolved arrivals. Furthermore 100% source correlation will cause rank deficiency
of the noise-free data covariance matrix as well. The other stress factor to a direction-finding
algorithm or scenario is the strength ratio between the two signals.

Hudson presented some eigenvalue results[23, pages 52-55] of the sensor data covariance matrix
for two discrete sources. We can use his results here to infer that it is not unusual to find a 30-
dB spread in the signal eigenvalues. Much more detailed treatment will be provided later in
this report. The three multiplicative factors that contribute to the eigenvalue spread are: the
signal-strength ratio, the angular proximity, and the high correlation between the two sources.
A high signal-strength ratio, say 10 dB, almost directly translates into the eigenvalue ratio. The
generalized cosine between the two steering vectors corresponding to the two arrivals is equivalent
to the source correlation coefficient, as far as their effect on the eigenvalue spread is concerned. A
value of 95% source correlation will contribute to 10 dB in the spread. A ULA with 10 elements at
half-wavelength spacing and a 2-degree source spacing between a second source and a broadside
one will yield 0.95 value of the generalized cosine between the two steering vectors, and therefore,
another 10-dB spread.

The condition number, which in this case is the ratio of the two dominant eigenvalues of
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the sensor data covariance matrix, is a good candidate to quantitatively describe the cumulative
stress of scenarios. It is of interest to know how the eigenvalues behave when spatially resolved
or unresolved (with respect to conventional beamforming) and/or temporally highly (including
100%) correlated arrivals are present, and as the ratio between the two signals' strength increases.

2.2 Eigenvector Weighting Expressions

2.2.1 In Noise Subspace Methods

Johnson and DeGraaf [25] proposed to modify the original noise subspace MUSIC algorithm by
weighting the noise eigenvectors with the noise eigenvalues. The modification was derived in a
somewhat ad hoc fashion. Some real data experience trading off Johnson and DeGraaf's weighting
scheme to Schmidt's unweighted MUSIC was reported by Martin [32]. Martin's result, based on
measured data, contradicted Johnson and DeGraaf's result, which was based on simulation and
showed promise using noise eigenvector weighting.

As Martin did not give an explanation of why this was so from using a specific HFDF data set,
we make the following conjecture. The noise eigenvalues appeared in the cost function through

a setting of "reciprocal of reciprocals" of noise eigenvalues. When dealing with real data, as
contrasted with simulated data under the ideal noise eigenvalues assumption, those small and
furthermore nonequal eigenvalues may indeed play havoc.

On the other hand, this specific HFDF data set was severely marred by nonrandom calibration
error. Furthermore, the input data to these two noise-subspace processors were the output from
a de-chirping process because the signal waveform was Linear Frequency Modulated (LFM).

What could be cast as uncertain or inconclusive result from studying this specific HFDF data
set is, however, remedied by the recent analytical result from Stoica and Nehorai [54] which shows
that the minimum variance in the class of weighted noise subspace MUSIC estimators is achieved
by the nonweighted MUSIC.

2.2.2 In Parametric Signal Subspace Fitting Methods

After Schmidt's MUSIC algorithm [49], Viberg and Ottersten's recent work [34,35,36,38,59,60,61]
on weighted subspace fitting (WSF) direction-finding is among the most important works in
array protessing. In earlier multidimensional MUSIC algorithms, the residuals from fitting each
signal eigenvectors by a linear combination of steering vectors with unknown DOA parameters
are weighted equally in the separable nonlinear least squares formulation to jointly estimate these
DOA parameters. Viberg and Ottersten found that a suitable weight for each eigenvector's fitting
can be used to minimize the asymptotic estimation error of DOA parameters.

The weighting mentioned here is different from Johnson and DeGraaf's noise eigenvector
weighting [25], because here signal eigenvector weighting is involved. The optimal WSF method for
parametric array processing has (dominant) signal eigenvalues appearing in the weight expressions
in the cost function. WSF is an optimal solution using a well-defined criterion. We note that signal
eigenvalues are much more stable than the noise eigenvalues both numerically and statistically.

For high SNRs, the weights used in the Det-ML and the optimal WSF methods are very
nearly equal. However, Cadzow's simulation results [8] using two coherent sources with high
SNRs indicate that the Det-MIL, which should be close to WSF in performance, is outperformed
by the single signal eigenvector fitting method. During a private communication with us discussing
this apparent discrepancy, Ottersten attributed this to the rank reduction principle by Scharf and
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Tufts [47] and Scharf [48]. The rank reduction principle trades off model bias and model variance
in the analysis and synthesis of signals to minimize the mean squared error. Even though the
rank reduced approach provides biased estimates, the mean square error could be lower than the
CRLB, which is asymptotically approached by Det-ML, an asymptotically unbiased estimator.
This suggests that only dominant eigenvectors should be used.

The paper by Swindlehurst and Kailath [57] discusses phase and amplitude gain uncertainty
and sensor position errors. The optimal weights are different from the ideal calibration case.

2.2.3 In Nonparametric Subspace Adaptive Nulling Beamforming

We need a brief description of the evolution of the well known Sampled Matrix Inverse (SMI)
method in adaptive beamforming (ABF) to the subspace adaptive nulling method before we can
address the equivalent version of weighted subspace variants.

For sonar applications, large arrays lead to problems in collecting enough snapshots for the
SMI method within the constraint of stationarity. Snapshot sample requirements results are
expressed in terms of the ,NR degradation because of the inaccurate covariance matrix estimation.
For SMI, the number of snapshots must exceed twice the number of sensors if the tolerable
SNR degradation is to be no more than 3 dB. Perhaps SNR is better written as SBR (Sianal-
to-Background Ratio) or SINR (Signal-to-Interference-and-Noise ratio) as some people prefer.
win this case, the increased background level is due to the interference left over because of the
inadequate adaptive cancellation, whether in the presence or absence of signal. The net result is
a decrease in SNR or SBR, which in turn leads to the system performance loss such as probability
of detection from using a higher absolute detection threshold (with respect to the white noise,
e.g.) to maintain a fixed probability of false alarm.

Subspace adaptive nulling depends upon the number of dominant eigenvectors. In their Prin-
cipal Component Inverse (PCI) papers, Kirsteins and Tufts [28,29] concluded that the number of
snapshots needs to exceed only twice the number of dominant eigenvectors if the tolerable SNR
degradation is to be no more than 3 dB. The numerical experim( nt results reported by Hung et
al. [24] agree with the results of Kirsteins and Tufts [29]. Even if PCI is used, a large sonar array
may still have the number of sources within the array coverage exceeding the number of available
snapshots. The natural question is: How small can the number of dominant eigenve,tors be as
compared to the number of sources?

Weights can be used in both MUSIC or its PCI beamforming equivalent and other recent sub-
space fitting methods, such as in Owsley's Enhanced Minimum Variance Beamforming (EMVDR)
[39,1,2]. (The term "weights" used here refers to weighting the signal eigenvectors. It is not the
"weight vector" used in the better known MVDR ABF algorithm.)

It is only a matter of time before someone starts to apply the optimal weights, used in the
WSF for the parametric signal subspace approach, to subspace beamforming, e.g., PCI which can
be considered as MUSIC's beamforming variant.

The recent papers by Farrier and Prosper [16], and Farrier [17] are very important. They
managed to arrive at the performance of those jointly estimating DOA algorithms with the cost
of those searching one-at-a-time spectrum type. They made a more efficient modification of
Redly, Wong, and Reilly's Bayesian approach in unknown colored noise [44]. While Reilly et al.'s
approach can handle 100%-correlated arrivals and colored noise, Farrier and Prosper [16] are not
far off as one of their methods managed to resolve two 98%-correlated arrivals in one scenario.
By using this same method, they also improved the noise threshold by 13 dB in another case as
compared to MUSIC. Among the three weighting schemes evaluated by Farrier and Prosper for
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this method, the optimum weights by Viberg and Ottersten outperformed two less sophisticated
ones by at least 3 dB in noise threshold.1

The word beamformer in Farrier and Prosper's paper is a misnomer as a beamformer produces
a time series at each grid point and their method is a direction-finding one producing a null spec-
trum. Consequently, we note that their method can use the interpolation scheme by Schmidt [50].
There he shows that for simple scenarios with a second signal at least a Beamwidth (BW) away,
the grid spacing can be as modest as 0.25 BW for an interpolation accuracy of 0.01 BW.

2.3 Drawbacks of Oversimplifying Stress Measuring Yardsticks

It turns out that condition number is not the only stressing factor for a direction-finding scenario
and there are quite a few drawbacks in using it as stress-measuring yardstick. Most of these
deficiencies are manifested under the following special cases citle, singly or jointly: the two
arrivals are 100% correlated, of equal signal strength, and with temporal phase difference 00 or
1800. Regardless of these deficiencies, it is still a useful measure summarizing many stressing
factors in many aspects.

2.3.1 Infinite Condition Number for All 100%-Correlated Arrival Pairs

When the two arrivals are 100% correlated so that the smaller eigenvalue is zero, the stress
measured by condition number will go to infinity. Such a stress measure may be appropriate
for the MUSIC algorithm, as the algorithm fails for this scenario, but not appropriate for the
scenario. An algorithm like weighted subspace fitting can handle the scenario with no problem
and furthermore asymptotically realize the (finite) stochastic CRLB. We know that some 100%-
correlated scenarios are less stressful than others, and in these cases, the efficiency defined by the
ratio of the asymptotic standard deviation of the parameter estimation to CRLB apparently is a
better stress measure. As CRLB is available for all scenarios, one would naturally wish to use this
as a universal yardstick. However, there is a practical problem: how do you represent all possible
scenarios and present the results compactly? So far, the CRLB is presentable only for uniform
line array, and even then not compactly.

2.3.2 Equal Condition Numbers Corresponding to Different CRLBs

Apparently, Schmidt [49, page 130] was the first one to use the noise-free signal eigenvalue ratio for
stress measurement of a two-arrival direction-finding scenario. le recognized that the "stress" at
the combination of ( <i, ' a) = (0, 1, 1) is the least 2 of all possible ones. The two signal-eigenvalues
equal the normalized unity power level at the sensor level. We believe that this led him to use
an expression depending only on the eigenvalue ratio as a stress measurenent. Evidently he was
hampered by the lack of an effective visual aid to grasp the nontrivial functional dependence of
these two eigenvalues on all possible combination of the product of the two unit-disks representing
the temporal and spatial correlation between the two arrivals. This possibly led him to conclude,

'These less sophisticated weight choices include the one that Cadzow used in his recent papers [9,10] where he
showed that his eigenvalue weighting produced results marginally better than the ones with unit weighting. It is
somewhat confusing as the weight choice should not have any effect when there is only one dominant eigenvector
involved such as in the case of two 100%-correlated arrivals used in these papers. If the dominant-eigenvectoi -only
choice was abandoned, the rank-reduction advantage as pointed out by Ottersten will he missed too.

'We will discuss this in subsections 3.3.1, 3.3.3, and section 3.4.
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without proof, a statement equivalent to one that the eigenvalue ratio can be one only at this
7,')= (0,l 1,1) combination.
We will see that when the two arrivals are of equal strength, i.e., a = 1, the two eigenvalues

are equal over the left boundary of an isosceles-right-triangle-like region. Furthermore, the two
equally dominant eigenvalues can go down to zero jointly so that the condition number stays
unity throughout. That is, the condition numbers are the lowest possible there. However, both
eigenvalues tend to zero as il tends to zero, i.e., the baseline of the region. So, when the noise floor
is brought in for example in the symmetrical multipath scenario, the direction-finding system can
still be stressed significantly. Yet the final scenario would correspond to the case of two strong
colocated coherent signals exactly equal in amplitude but totally out of phase. Even though the
condition number remains as favorable as possible, i.e., of unity value, the scenario starts from the
most benign one in stress and progressively gets more and more stressful and eventually gets to
the point of being totally hopeless. The final DF problem amounts to determine the value of two
equal numbers when it is only known that the difference is zero. Because the two signals cancel
out each other exactly at the colocated emitters' location before the waves can propagate out, the
sensor measures zero. Therefore, the magnitude of largest eigenvalue in unit of the smaller signal
strength at the sensor level is a good complementary stress measurement.

2.3.3 CRLB Not Appealing to Intuitive Expectation

The effect of the phase difference between two sign ls on direction-finding is apparently not a
well-understood subject. Most work about the effect of phase difference in direction-finding is for
the low-angle radar tracking problem with two closely spaced, coherent, equipowered plane-wave
arrivals impinging on a ULA. In examining candidates for the stress measure, we have considered
eigenvalue ratio, CRLB, and asymptotic performance results of some subspace algorithms for such
scenarios. However, we cannot intuitively reconcile the differences among these candidates.

If the center of the array is chosen as coordinate origin, the CRLB is symmetric, is maxiniiuni
at 00 or 1800, and is minimum at 900. The analytical derivation of this result is available in the
report by Evans, Johnson, and Sun [15]. When we have two 100%-correlated signals, the scenario
points in the isosceles region are located at the baseline where the smaller eigenvalue is zero.
Furthermore, when the two signals are equipowered, the larger eigenvalue has ' a linear variation
varying from 0 to 2 to 4 when we move from the left-end to the middle and then the right-end
point on the baseline. We try to use CRLB for the ULA case to serve as the stress measure. Note
that the scenario with constructive interference has the same CRLB as the destructive one, i.e.,
it is symmetric about 90'. The CRLB has its minimum occurring at this 900 phase difference
point. For he extreme case of colocated signals, intuitively one would think that the constructive
interference case is a more favorable scenario than the destructive one. This is because one can
decide the DOAs from the constructively combined arrivals, even though one cannot infer whether
more than one arrival contributes to the measurement. Neither can one reconstruct the original
two-component amplitudes given only the final total. We believe this dilemma arises because of
the derivation of CRLB from a rank-deficient composite steering vector matrix. If we allow the
two equipowered arrivals to be colocated to start with in the basic data model, the constructive
scenario may be differentiated from the destructive one for the CRLB.

For the equipowered case, the destructive interference scenario point is at the left apex of the
isosceles region. Both Pigenvalues are zero aud they are global properties. The eigenvalue ratio

at this point is of the 0/0 form. It is shown in subsections 3.4.1, andi 3.4.4 that the contours
,2

'3We will discuss this in subsection 3.3.2.
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of ' = I pass through this point. This point corresponds to the total cancellation of signals at
the sensor element level. The total cancellation happens not only at the center of the array but
at every sensor. The two steering vectors coincide and the temporal waveforms negate each other
completely. Consider two strong sources behaving this way. As the SNR is measured by turning
off one source at a time, so the equal SNRs are considered as high and CRLB and asymptotic
results apply.

The unified framework of subspace-fitting methods leading toward Ottersten and Viberg's
WSF formulation for this two-source problem involves different weights. The optimum weights
for the high SNR case involve the eigenvalue ratio. This ratio is indeterminate, and the asymptotic
standard deviation can assume different paths leading toward the anomaly point.

Tran [58, derived and plotted the 2-d mesh surfaces of CRLB, Det-ML, WSF, and MUSIC
against phase difference and SNR. For 90% temporal correlation, the CRLB surface is a lower
bound for the other asymptotic surfaces and is symmetric with respect to the phase difference at
900. Both WSF and Det-ML are fairly similar to each other because the SNI dsed is high. They
lost the symmetry at 0.2-BW separation but retained a dip with 1800 low, standard deviation
at 1800 than at 00. MUSIC at 0.2-BW separation is monotonically increasing starting from 180'
passing thru 900 and all the way to 0'. The mesh plots show that the symmetry conditions are
present at 1-BW separation.

We need to reexamine the derivation of these asymptotic results and determine whether the
rationale in dropping high-order terms remains valid when the parameters of these scenarios are
taken into consideration. There is also the possibility that either the results are right but we
need some interpretation or there is some flaw in our formulation. Numerical simulation seems
to support those asymptotic results. Another question is whether high SNR is relevant under the
condition of perfect cancellation.

2.3.4 Redeeming Value for Condition Number

Even with all these deficiencies, condition number is still a useful measure summarizing stressing
factors in many cases. When the phase difference between two signals does not come into play in
the eigenvalue expressions, such as when the two arrivals are temporally uncorrelated or spatially
orthogonal, eigenvalue ratio seems to be a plausible stress measure. There, a large eigenvalue ratio
will reflect the effects of either large normalized spatial- or temporal- correlation coefficient or high
signal-strength ratio or any combination of them. For those problems with 100%-correlated and
closely spaced arrivals, such as in the low-angle (microwave) radar tracking problem, mean square
errors or CRLBs may be substituted for condition numbers as better stress measures, and the
compact presentation for scenario parameter tradeoff need be used with cautions.

Schmidt's original MUSIC algorithm 4 uses the signal eigenvalues in a binary manner. That is,

a hard decision between noise and signal is made. Viberg and Ottersten avoided making a binary
decision by introducing a scale equivalent to the eigenvalue ratios. While much more information
may be gained by using eigenvalue ratios, we are still constrained by the information that is
conveyed. Other measures vdifl piovide u., inuoie i ,iiaitloI,, if there exists a manageable way to

4 Here, we include the Mltil)imensional (MD)-MUSIC described in his thesis for jointly estimating DOAs
simultaneously which was motivated by considering the rank deficiency caused by 100%-correlated arrivals. There,
he also pointed out the separable nonlinear least squares approach for MD-MUSIC. The name MD-MUSIC was
coined in Roy's thesis [451 and later used in Viberg and Ottersten's works. While we have occasionally followed
their usage, it is regretfully a misnomer. Without prior exposure of its definition, people tend to conjecture that
some elevation measurement in addition to that of azimuthal one is involved. A better replacement is "jointly
estimating MUSIC" contrasting the original one of searching one-at-a-time type.
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present it, such as a compact map showing CRLB or asymptotic performance over all possible
scenarios. We note that CRLB depends on the steering vectors not just through the function
values but also the local behavior as functions of the direction-of-arrival (DOA) parameters. This
is contrasted to the real triplet ( , q, ,11) required for the two noise-free eigenvalues and their ratio.
Therefore, the next step of advancing from condition numbers to CRLBs is a very significant one.

2.4 Special Treatment Given for Equal Power Arrivals

The following are the reasons for giving equal-power arrivals special treatment:

1. It happens naturally in physical phenomena, e.g., for the case of low-angle radar tracking,
see Haykin [22], Reilly and Haykin [41,42], Haber and Zoltowski [211, and Zoltowski and
Lee [66]. The problem is the estimation of DOAs of a radar target located over a smooth
reflecting sea when the main beam is pointed at or near the horizon.

2. Shown in subsection 3.4.2 is that for given a power ratio, the A slices for constant phase-
dependent variable s are parabolas. The equal-power arriva! case has some unique analyti-
cal properties stemming from the fact that it has the vertices of half of parabola sections fall
within the range of parameters of interest. Consequently, there are infinite slopes involved
here, unlike any other power ratios between the two arrivals. This is also the only case in
which it is possible to have the two signals to cancel each other completely.

3. Most of the performance characterization using either Monte Carlo simulation or asymptotic
analysis include equal-power arrivals as examples. For instance, see Cadzow et al. [6,7,8].
Kaveh and Barabell [27], Ottersten, Viberg, et al. [34,36,37,59,60], Pillai and Kwon [40,30],
Reilly and Ilaykin [41,42], Stoica and Nehorai [53,54,55], Haber and Zoltowski [21], and
Zoltowski and Lee [66].

.1. The concept of resolution threshold has been exploited by assuming two signals of equal
power impinge on a ULA. The concept was started by Cox [13] for CBF and ABF. Kaveh
and Barabell [27] used the same scenario for the MUSIC algorithm for incoherent arrivals.
Pillai and Kwon [40] extended the treatment to MUSIC for coherent arrivals via spatial
smoothing. Kwon and Pillai [30] further considered the resolution threshold issues for some
special cases5 of three equal-power arrivals. However, the concept of resolution threshold
has outlived its usefulness with the arrival of the asymptotic analysis results such as those
from Stoica and Nehorai [53,54,55], Ottersten, Viberg, et al. [34,36,59,60]. These asymptotic
analysis results yield more insight, provide much more information enabling one to make
parametric studies, and furthermore, s-- applicable to general sensor array configuration
and general scenarios.

For the case with the arrivals equally spaced in electric angle, the required threshold SNRs for the three-arrival
case to resolve the three are about twice those for the two-arrival cases in dB scale. That is, the presence of a third
source which is symmetrically located with respect to the center source increases the SNR required to resolve the
original sources approximately by a factor of two in dBs.

For the general case, Stoica and Nehorai [55] proved that the asymptotic Det-CRLB increases monotonically
when one more emitter is added while the directions of and the signals emitted by the original old sources remain
the same. Furthermore, if the new source signal is uncorrelated with the older ones, then the Sto-CRLB increases
monotonically. They stated that it is an open problem whether the assumptions of uncorrelated signals might be
relaxed.



Chapter 3

Eigenvalues for Two Arrivals

3.1 Eigenvalue Equations

We follow the notations in Hudson's text[23, pages 37-38,52-55].

(.)H Hermitian transpose
(.)T ordinary transpose

() complex conjugation
Re(.) real part of a complex number
E(.) expectation operator

the quantity for the new coordinate

N number of sensors in array
x N-dimensional array data vector, x = Sm + n
R data source covariance matrix, E[xx H ]

si steering (column) vector for the ith source
S composite steering vector matrix, S = {si}
0) generalized cosine between s, and S2
p normalized correlation between first and second baseband signals
7rl signal power for the stronger source

7r2 signal power for the weaker source
Ai ith eigenvalue of R
A, larger eigenvalue of the noise-free part of R, normalized to Nir 2

A2  smaller eigenvalue of the noise-free part of R, normalized to Nr 2

77 (1 - !012)(1 -IpJ 2), independent of the angle difference between the normalized
temporal and spatial correlation coefficients p and 4, both constrained to unit disks.
Re(p O*) = IpI¢I1 cos(arg p - arg 0), dependent on angle difference

a the coefficient vector expressing an eigenvector as a linear combination of steering vectors
zi position vector of the ith sensor element
K unit direction cosine vector for the direction of arrival(DOA) of a signal
c speed of wave propagation
6 the difference between two coordinate origins
wO the center frequency for the narrowband signals
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(Xn, Yn) xn = (n - l)d, y, = 0, the elements' location of Uniform Line Array (ULA)
d the uniform interelement spacing
a,ao directions of two arrivals relative to broadside
0 sin a - sin ao, the reduced angular variable
k 27r/wavelength, wave number
kdO the electrical phase angle from element to element along the ULA
4-dB-down-bw.in-0 4 dB down beamwidth
Of rac-bw separation between two arrivals in fractional beamwidth

In complex notation, the N-dimensional sensor output vector x is modeled by a linear combi-
nation of steering vectors si of M sources plus an N-dimensional noise vector n

x = Sm + n,

where m, is the complex amplitude of the 1-th arrival. The usual assumptions of white noise and
zero correlation between each signal and noise lead to

R = E[xx H = S E[mm"I SH + 021,

where a2 is the variance of the spacial white noise. The eigenvalue P and eigenvector u of R is
defined by

Ru = iPu.

Hudson in [23] used the following developments restricted to the two-arrival case. The eigen-
values pi of R are related to the eigenvalues Ai of E[mmHIJ SHS through the relation

tIj = A, + a 2 .

The general case was mentioned in Kwon and Pillai[30]. These known results are rederived in the
following. We start from

(S E[mm n ] SH + or2 1)u = tu,

or

(S E[mmH] SH)u = (1 - o2 )u = Au.

Therefore, the non-noise eigenvectors are linear combinations of the steering vectors of the DOAs,

U = S( E[mmH] SHu) = Sa.

The non-noise eigenvalue can be derived from

S( E[mm H I SHS - AI)a = 0.

With the usual assumptions that the steering vectors for different DOAs are linearly independent,
we have

( E[mmHI SHS - A[)a = 0.

Note here, the components of each eigenvector in this new non-Hermitian eigenproblem correspond
to the coefficients expressing the corresponding eigenvector of the original Hermitian eigenproblem
expressed as a linear combination of steering vectors.
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In general, the product of two Hermitian matrices is not Hermitian. In fact, for the two-arrival
case, we can see from the product matrix in Hudson's text[23, pages 52-55] that the diagonals are
no longer real and the off-diagonal entries are not complex conjugate of each other. However, the
eigenvalues of this product matrix should be real and non-negative as they are from the original
Hermitian eigenproblem. Therefore, the sum of the diagonal entries are still real because of the
invariant property of the trace after orthogonal transformations. By using a similar but simpler
factoring argument, Speiser and Arnold[51] in fact derived useful bounds for singular values of
direction-finding problems for the general case. As the emphasis of this report is on two arrivals,
we will evaluate his bounds in section 3.6 in this context.

We return to the consideration of two-arrival noise-free dominant eigenvalues. These two
eigenvalues for the eigenproblem

[/i-IrpH 7r2  NOH N a =a

are

A2 2 N[Irl + r2 + (7rlr)'2 ] x 1± 1 -[,,,+( )2

where
= (1 -.012)(1 - p12),

= Re(pO*) = IplI 1cos(arg p - argt ).

Let 7r, > r2. The eigenvalue problem can be rewritten as

Vj& OH 1a N r a.
I/ H 1 1 0

Henceforth, the eigenvalues will be redefined as their normalized values with respect to Nr 2 , so
that

A2 2 r2+1 7)2 [X +=1 1- 1 +,, 2]

Before finishing the introduction of symbols and definitions, we point out the importance of the
sensor coordinate origin. When two arrivals are 100% correlated, the phase difference between the
two source signals plays an important role. The specification of this variable depends on the choice
of the coordinate origin. Frequently, performance such as CRLB is plotted against this variable.
If two different origins are used, the same results can be seen differently but are equivalent with a
horizontal shift and possibly with the help of 27r-modulo wrap-around. Naturally, the covariance
matrix and their eigenvalues are not dependent on the choice of the origin, but the expressions
for the phase angles of both the steering vectors and complex source amplitudes of the signals
are. The following make these discussions clearer.

Denote the difference between the two coordinate origins by 6, i.e., the sensor position de-
scriptions in these two coordinate systems are related by zi = i + 6 for all sensor elements. The
signal part of the sensor data vector at the ith sensor is

2 2

(Sm)i : SiMk d Z e C '/Mk
k=I k=1
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2 2

= Z(eoK~hc)(e Ii/Mk) - jISikfnk
k=1 k=1

Define D = diag(e3i"O 6/cMk). Then we have S = SD-', and ffi = Din. Note

( E[( zfiiH ] )ij = (D EmmH] DH)j1 = ej "O(° < - '
KI)TS/c ( E[mm H ] )a,

and

(sHs)it = (D-HSH SD-l)il = eJwo( i-')6/c (SHS)il"

The angular difference between the temporal and spacial correlation coeffients is therefore inde-
pendent of the coordinate choices, as

arg( E[rhrhHI ),t- arg (sHS)ji = arg( E[mmH] )it - arg(SHS)it.

The assignment of an array coordinate origin synchronizes the angles of zero references of the two
disks.

In the special case of plane waves, an array is called pairwise symmetric or inverse symmet-
ric (13] if for each sensor located away from the origin at position coordinates (xi, yi, zi) there
is also a sensor located at (-xi, -yi, -zi). The inner product of two steering vectors for plane
waves impinging onto a pairwise symmetric array is real. For such case, the usual two-dimensional
unit-disk associated with spatial-correlation 0 degenerates into a one-dimensional one. Then the
angle difference between the temporal- and spatial-correlation coeffients is reduced to the temporal
phase difference between the two arrivals measured at the origin of the symmetric array.

Even though such relation is derived from plane waves impinging onto pairwise symmetric
arrays for convenience, we call 7 the phase-independent variable and the phase-dependent vari-
able.
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3.2 An Isosceles-Right-Triangle-Like Region

One can see easily that the normalized As and their ratio A,/A 2 are functions of the three param-
eters i/, , and TrI/r 2 . It is clear that 0 < t7 < 1. But 77 and are not entirely independent of
each other. In the following, we will show that given 71, is bounded depending upon the } value
which in turn depends only on JPJ and 101.

As is the triple product of Ipl, 1 1, and cos(argp - argq$), it suffices to bound

l Imax, given ,7 = Ipll0l

subject to the equality constraint

(1 -1012)(1 -IP1 2) = 7.

Using

(IpI1I) 2  - !p12(1 - lp2). .  = p 72 - (-1 +  11 1 - J J21 - Ipl2)

- -(1 - Ip12) + (1 + ) 21

and setting to zero the derivative of the above expression with respect to (1 - p12) to maximize
we have

-1 + 71 -or - 0-1 --(1 _ p 2n 2
-~max 4, give. )

then we have
IP1max 4, given, ___ 1 _ V.

From the definition of 17, a similar relation holds for k, i.e.,

1012 x 4, given = 1 _ -

Therefore, we have

(IPII0).x 4, given -- 1 - -

For given irl/7r2 , the domain in the q and plane over which As and their ratio A1 /A 2 are
defined is the isosceles-right-triangle-like region bounded by one line and two parabolas:

77= 0, and 7 = ( ± 1)2.

We note the zero slope of each parabola where it meets the straight line and the 900 angle that
the two parabolas intersect each other.

We will see later that among the three parameters (, 77, Irl /r 2 ) appearing in the eigenvalues'
expressions, I is the most important one. In the following, we use figure 3.1 to provide some
characterization of the many-to-one mapping from the Cartesian product of the two unit-disks

onto the isosceles-like region with respect to 77. We note that for given iq, max(Ipl, 101) = 1 - .ftj

Therefore, the apex point (0, 1) corresponding to 77 = 1 can only come from the two centers of
the unit-disks, i.e., p = 0 = 0. As 71 decreases from 1 to 0, i.e., we move from the apex towards
the baseline, we shade the part of the Cartesian product of the two unit-disks which is mapped
into the correspondingly shaded area of the isosceles-like region. Therefore, as the shaded area of
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Ipl,lpl=o
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0

T1 1/2 IpI91015< 0.54

11 2:1/4 IpI,1 4 < 0.70

I a. 0 1Ipl,lI lk 1.0

561-276

Figure 3.1: The many-to-one mapping.

2.1



the isosceles-like region expands from the apex towards the baseline, the shaded areas of the two
unit-disks expand from the centers toward the unit circumferences.

When we move one-fourth the way toward the baseline, i.e., q _> 0.75, we find max(lpl, 101) =

/1 - v ; 0.36. Let us shade the corresponding range and domain of this many-to-one
mapping using 450 hatching lines for this 71 _ 0.75 region. Similarly, when we have moved halfway

toward the baseline in the isosceles-like region 71 _> 0.50, we find max(Ipl, 101) = /1 - ;
0 3 ; 0.54. Let us overlay onto the earlier picture by shading the corresponding range and

domain using offset 45' hatching lines for this 7 > 0.50 value. We note that the previously 45'
hatched region are double-hatched now. For any point in the incremental area of the isosceles-like
region corresponding to the singly 45' hatched but not double-hatched area, i.e., 0.75 > 17 > 0.50,
at least one of the originating p or 0 must be located in the correspondingly shaded incremental
annulus, i.e., 0.36 < IpI or 101 < 0.54.

We also note that r = (1 - 1012)(1 - 1p12) is the height of the unshaded trapezoidal-like region.
We can associate irq as the product of the areas of the two unshaded annulus regions, 7r(1 - 1012)

and 7r(1 - p12). As this height reduces from 1 to 0, i.e., the unshaded trapezoid decreases from
the original whole isosceles all the way to the zero thickness baseline, the corresponding white
annulus shrinks from the original unit-disk to a zero thickness circle.

When the scenario is stressful, r7 is small, the corresponding annuli with unit outer radius are
thin. The area of the temporal correlation p annulus can be approximated by

7r(1 - Ip 2) = ir(1 + Ip)(l - Ip) ; 2ir(1 - 1pD.

Suppose the temporal correlation coefficient has a magnitude of 99% and up, then the thickness
of the p annulus is 0.01, the area of the annulus can be approximated by 27r(0.01) by letting the
mean circumference of the annuls assuming the outer circumference of the unit-disk, 27r. The
approximation is 99.5% accurate. If the spatial correlation coefficient has a magnitude of 90%
and up, then the thickness of the 4 annulus is 0.1, the area of the annulus can be approximated
by 2r(0.1). The approximation accuracy is 95%. We see that a combination of the high temporal
and spatial correlations yield an q7 of approximately (-20 + 3) + (-10 + 3) = -24 dB.

For given 77, we are interested in the maxima of Ipl, 141, and 1 1. Given r/, 77 = (1 - 1012)(1 -

1pl 2) _< min(1-lp2 , 1I_12). That is, max(p 2, 1012) q -ti, or max(IPl, 101) -< V 1 - 7. Therefore,
max(Ipl) = Vf -71 occurs when 1 - 112 = 1 or 0 = 0. Similarly, max(l14) = V1 - 77 occurs when
p = 0. Both scenario points are at the vertical axis, = 0.

Consider 77 = 1, i.e., three-fourth of the way toward the baseline. Kimin, given q = 0 occurs

at the vertical axis, with IPI or 101 = V/TT- = -0 - 0.866. We already know that, from the
2

derivation of the isosceles region, Ki max, given q occurs at 1lI = 11= V1 - = V2 " 0.707,
i.e., the two parabolic boundaries. These are summarized in table 3.1.

Figure 3.1 need to be interpreted with cautions. The domain of the many-to-one mapping,
a subset of the 4-d Cartesian product of two disks, for a range having the shape of a shaded
2-d subtriangular region cannot be explained briefly. The labels and sizes of the shaded disks in
figure 3.1 need be interpreted according to table 3.2.

Next, we use figure 3.2 to characterize some special positions in the isosceles region. Hudson's
textbook presented 4 out of the 17 characterizations shown there. These four cases are denoted
by the asterisks.
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Table 3.1: Expressions of I11, Ip, and 101, given q/ 4

I 1 Ipl I ,1

0 (center of disk) max= V1 = ; 0.866ra in = 0 ( v e r t ic a l a x is )V 3 z: 9 8 60 ( e t r o d i k
max = V/1 - = 9.866 0 (center of disk)

max = 1 - V7-=7 0.5000.7

(parabolic boundary) -)(____ __2_ t 0.707 V-2_-__ _ :_ ___ _0. _07

Table 3.2: Interpretations of the .0 unit-disk for two uncorrelated plane wave arrivals impinging
onto a uniform linear array.

71 max11 2 = 1 - i/ max = Vf - q Separation Between Arrivals

1 0 0 nulls, i.e., 1,2,---,-,W
2 1 1 = 0.500 > LBW

4 4 2_ 2

i i 5 0.707 L-BW
2 2 2~ 2
i 3 15: 0.866 < LBW
4 4 2_ _ _ _ _ 2__ _ _ _ __ _ _ _ _

0 1 1 coincident mainlobes or grating lobes
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3.3 Special Cases at the Apex, the Baseline, and the Vertical
Axis

We now characterize some special cases of interest. They are

1. at the apex, i.e., (, 77) = (0,1),

2. at the baseline, i.e., 71= 0,

3. at the vertical axis, i.e., = 0.

3.3.1 Special Case at the Apex, i.e., ( ,,q) = (0, 1)

Here we have the two arrivals 0% correlated and the two steering vectors orthogonal to each other
simultaneously. Note

-, and 1\2 = I or 101og10 (A,2 ) = 0 dB.
7r2

This is the most benign scenario for a direction-finding system where the two arrivals behave
essentially independently of each other.

3.3.2 Special Case at the Baseline, i.e., t7 = 0

This is the case where the source amplitudes of the two arrivals are 100% correlated or/and the
two corresponding signal vectors are complex scalar multiples of each other or both.

We have the following results:

A,2 = 0, or 101og 10 (A2 ) = -o0 dB,

71r- +1 +r r 2
72 7r2

We note that when changes from -1 to 0 to +1, A1 varies linearly in 4 with the slope equal to
2 \/ from

( 2-1)2 to ("+l1) to (F-+l

Therefore, the two vertices corresponding to

( ,j) = (-1,0) and (1,0)

are associated with totally destructive and constructive interferences respectively. Here the two
arrivals are colocated with respect to the steering vectors, e.g., along the same direction of arrival,
and the source amplitudes are exactly opposite in sign or equal to each other. At the mid-point,

= (0, 0), we have

A, = +1.
1r2

When the two 100% correlated arrivals are "quadraturely related," this is the place where it occurs.
(In direction-finding, any two arrivals are called coherent as long as their source amplitudes are
100% correlated, even if their phase difference is 90'.)
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3.3.3 Special Case at the Vertical Axis, i.e., = 0

We have any of the following three possibilities:

1. p = 0, i.e., the source amplitudes of the two arrivals are 0% correlated,

2. 0 = 0, i.e., the two steering vectors are orthogonal to each other, e.g., a delay and sum beam
for the case of ULA in the direction of the first arrival will produce a null in the direction
of the second,

3. cos(argp - argq$) = 0, i.e., the 2 phasors on the two unit-disks are perpendicular to each
other.

We have

2 +r2  + 1 .

This can be rewritten in a more revealing form of a parabola in A and 77

[A - ( rL + [ _( ' - 7 ) l 7 r , [77 + 1)2 ]

+1) = 2 +1 7-2 =  -- Ir--4

This equation describes that the two curves of A1 and A2 as functions of 77 for = 0 pertain to
two parts of the same truncated parabola in A and q/. Because the arithmetic mean of a and 1 is?r2

never smaller than the geometric mean, the vertex of this single parabola lies outside the domain
of interest except when 1 = 1. In the exceptional case, there is no truncation of the parabola in A7r2

and q and the two curves meet at unit height. As q1 decreases from 1 to 0, the concave downward
curve of A, increases from M to ! + 1, whereas the concave upward curve of A2 decreases fromW 2 Wr2

1 toO.
Taking partial derivatives of the last equation of the two curves with respect to I and rear-

ranging, we have for i = 1,2

j0 77 W2 - (+ 1)]

At the baseline where r7= 0, A1 = E + 1, and A2 = 0, we have7v2

-2 A(00 ___ 1

-A 1 (0,0) = 20 + 1( +

097 ~2 1) + 1Y

At the apex where1= 1, A,= and A2 = 1, we have

W2'

_A1 (0, 1) = -- A2(0, 1) (r-1) ( + 11

For large 1 and as r ranges from 1 to 0, the theoretical decrease in magnitude of the slopeIr2

of the slightly concave downward curve of A1 is hardly noticeable. For all practical purposes, the
A2 curve is a straight line with slope I and values between 1 and 0, and that of A1 is a straight
line with slope -1 between 1 and 2. When scaling is used, the A, and A2 curves plotted together
will be fairly flat for large a values.
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When = 1 and as qj ranges from I to 0, the slope of the concave downward curve of A1
increases from -oo to -1/2, whereas the slope of the concave upward curve of A2 decreases from
+00 to 1/2. The ±oo values of the slopes of the A2 and A, curves with respec. to 7 at 7=
indicate the rapid rate of the increase in "stress" to the direction-finder for the case of - 11r2

However, we also note that the "stress" at this combination of ( , 7, LI) = (0, 1, 1) is the least of all
possible ones. Unless special care is given, commonly used plots will not reflect the infinite-slope
case well.

As we try to use the eigenvalue ratio as a stress indicator, the rest of this subsection
concerns the ratio -' as a function of !L and 77. We separately discuss the two cases of - > 1r2  72

and a z 1.
7r2

When 11 > 1, we first approximate the radical expression as

4_____4y 2y7

77r2

Then the ratio - is given approximately by

A, 1  +1 2 -~
A 1 _ - In.

A2  i- 7r2

That means the stress from 71 and t is multiplicative (divisive) in the direct scale. In dB scale.7r2

this is additive, i.e.,

(in dB) (-)(in dB) - q(in dB).

When U;z 1, we have7r2

A1  1+ /F7 _ (1+ I-, 2 - + zVT---7 4
A2  1 -v - q 1 - (1 -77) 77 71

We used q < 1 in the last step. Translated into dB scale, this is

A 1 .-A- (in d B) ; -,1(in dB) + 6.

This extra 6 dB accounts for the presence of the infinite slope of A with respect to 77 at the apex
for the equal-power arrival case.

These analytical results will be verified in figure 5.29 and discussed in subsection 5.4.1.
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3.4 Special Case: Equal Strength Arrivals, i.e., 1/7r2 - 1

The normalized eigenvalues assume the following expressions

AX=(1 +,) 1- (1+ )2 (I+ +) 2

We note that
AIM0,1) = \2(0, 1) = 1, and AI(- 1,0) =A2( , 0) =0.

The first equation states that the two surfaces A( ,q) and A2(V,77) coincide at the apex of the
isosceles-right-triangle-like region, as they should. The second equation states that both eigen-
values coincide again and vanish at the left vertex of the baseline corresponding to destructive
interference.

The two eigenvaues are equal (not necessarily zero) only if what is inside the radical vanishes.
For the case 7r,/7r2 = 1, the resulting equation coincides with that of the left parabola in the
and 77 plane bounding the region over which the As are defined. The common value they share is

Aj( , (1 + ) 2) = ( 1 + ) = V/-.

However, we caution that unless special effort is made in plotting results, the two displayed
surfaces or curves may not always meet at the supposed places. This is because the boundary
curves defining parabolas in the and 'q plane, in general, do not pass through the grid points
used in the and q} plane.

At the baseline 77 = 0, we have A2 = 2(1 + ). This means that when changes from -1 to 0
to +1, A, varies linearly in with unit slope from 0 to 2 to 4. At the vertical axis = 0, we have
the following parabola forms

A, = 1±+Vj-I-.

3.4.1 Straight Line Contours for Constant Eigenvalue As

We now investigate the contour plots of these two surfaces by using the following rearranged
equations

A, - ( I + )=+/I + )2 _ 77,

or

7 + A = 2A,(1 + ).

These contours are straight lines in the and q plane with positive slopes 2Ai and intercept the
vertical line passing through the left vertex (-1,0) of -A . The mesh and contour plots of A1 and
A2 are shown in figures 3.3 and 3.4 respectively.

As the contour values of A1 increase from 0 to 2 to 4, the slope increases linearly from 0 to 4
to 8, and the intercept decreases quadratically from 0 to -4 to -16. These contours intersect the
baseline in equal intervals as we noted early.

As the contour value of A2 increases from 0 to 1, the slope increases linearly from 0 to 2, and
the intercept decreases quadratically from 0 to -1. Note the 0 contour coincides with the baseline.
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3.4.2 Parabolic Slices for Constant Phase-Dependent Variable s

For constant slices, the characteristic equation can be rearranged to that of a parabola in A and
7as

[,\ _ (1 + )]2 _- _[ 1 + )2 .

Figures 3.5 plots for A1 And A2 vs 7 At =-0.50,-0.25, 0, +0.25,+0.50 For - - 0 dB.7r2

For constant < 0 slices, the vertexes of the vertical parabolas in A and 7 will be exactly
over the parabola 7 = ( + 1)2 in the horizontal and q plane defining the left boundary of the
isosceles-right-triangle-like region, with heights of ±(1 + ) = ±Vr- as described earlier from a
slightly different perspective. The ±oo values of the slopes of the A2 and A1 curves with respect
to 7 at the vertexes of these parabolas indicate the rapid rate of the increase in "stress" to the
direction-finder for the case of = 1. For constant > 0 slices, the vertical parabolas in A and 77r2
will have their vertexes located over the continuation of the just mentioned left boundary parabola
in the horizontal and 7 plane. Therefore, the apexes are outside the isosceles-right-triangle-like
region, and furthermore, beyond 77 > 1. The curvature of the parabola is 1 at the vertex and is
independent of the value; i.e., all the parabolas are translational copies of each other.

Taking partial derivatives of the parabolic equation with respect to 7 and rearranging, we have
o A = -1 +1
-A4977 2 [A - ( + 1)) /1 2_7

At the 7 = 0 baseline, we have

(O 7 - 2(1 +.)

For the following three special points, they are
a 1 0 1

aA(-1,0) = 4 -, (9 A(-1,0) A(-1,0)

We note that the ±0 values are not very useful mathematical expressions, as only a single point
is defined in the q direction at the left vertex as the domain of interest is concerned. Similar
remarks hold for the right vertex. These values suggest the neighborhood behavior about the
vertexes, however.

For given and = 1, as for all other values, the stress of a direction-finding scenario is
highest when the baseline 7 is approached. We are interested in the local behavior at the stressful
region about 7 = 0. In this region, the large eigenvalue A1 will not change much in terms of its
order of magnitude. This is not the case for the small eigenvalue A2, as it is the difference of two
nearly equal numbers. The local first-order approximations to A1 and A2 near 7 = 0 are therefore

Al( ,7q) Al( ,0) = 2(1 + )

2(l +
Near i = 0 and at the three particular values of -1, 0, and 1, we have

A 007, \ 2(0, 71) 2 2, A2(, 7 ) '7

We can confirm these analyt'cal findings by reviewing figure 3.5. These discussions about the
local behavior of the eigenvalu,-s near the baseline also serve as a preview of the next figure 3.6
in the next subsection.

33



4'

3.5

3 0.5

S2.5 --

.'6 - 0.25

2

25 1.5

1 02

0.5 -0.5 .-... .

-~ - 0.25:

0L - -- -

0 0.1 0.2 0.3 0.4 0 .5 0 .6 0 .7 0 .8 0 .9

eta at xi=const sections

Figure 3.5: Parabolic slices:A1 and A2 vs 77 a~t =-0.50,-0.25, 0, ±0.25,+0.50 for 1'- 0 dB.

4

3.5.... .. .

S 2.5 .. ...

2 2. ..

E
It 1.5

0.55

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

xi at eta=const sections

Figure 3.6: Hyperbolic slices:Al and 2 vs at r,0.0, 0.25,0.50,0.75, 1.00 for 11 0 dB.

3.1



3.4.3 Hyperbolic Slices for Constant Phase-Independent Variable 71s

For constant q slices, the characteristic equation can be rearranged to that of a hyi)erbola in A
and as

A2 - 2 A - 2A + 77 = 0.

Figures 3.6 plots for A1 and A2 vs r7 at I = 0.0, 0.25, 0.50, 0.75, 1.00 for - 0 dB.
We defer the derivation and characterization of i "ese hyperbolas to appendix A and the next

section for the general case. We mention a few results here.
The two straight lines represented by A1 and A2 over the baseline ql = 0 are those of a

degenerate hyperbola from a one-parameter 77 family of hyperbolas in A and sharing common
asymptotes when the parameter q is 0. The common asymptotes are the two straight lines.

Having defined the common asymptotes of this family of hyperbolas, the next important
property is how the vertex varies when ql increases from 0 to 1. Define -v as the distance from
the vertex to the intersection of the common asymptotes. We note that -=v is proportional to 617,
i.e., =v at r7 = 1 is half of Ev at 77 = 1.

3.4.4 Contours for Eigenvalue Ratio -
1\2

Consider the one-parameter family of parabolas 2F,+1) = p parameterized by p from 0 to 1. The
parabolas have their vertices colocated at ( ,77) = (-1,0), i.e., at the lower left corner of the
isosceles-like triangle and their common tangent the baseline 77 = 0. When p=O, the parabola is
the baseline I = 0. When p=l, the parabola is the left boundary of the isosceles-like triangle
77 = ( _ 1)2. Therefore, this one-parameter family of parabolas will cover the whole isosceles-like
triangl,. when the parameter p is varied from 0 to 1.

We need to find the shape of the contours of the eigenvalue ratio = 1, i.e.,

A, (1 + ) + V(1+ )27 _77
A2  (+ + 7(1Jr)2 7

Having set up the problem in this way, it is easy to see that the contours of the eigenvalue ratio
2= I are the same one-parameter family of parabolas introduced above with the conversion

between the parabola parameter p = p and eigenvalue ratio - I as

41 o 2-p +/VT-4por/1-

(I + 1)2 p
We can reacquaint ourselves with the previously found result that the eigenvalue ratio = 1

is 1 on the ieft boundary of the isosceles-like triangle q - ({+1)2 and 0 on the baseline r = 0. The
dB-scale contour plot for this equal strength arrival case is presented in fig. 5.10 in section 5.2.
Because the contours of - = I pass through the lower left corner of the isosceles-like triangle, this

corner is a point of discontinuity for the eigenvalue ratio for the special case of equal strength
-0 dB.

r2
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3.5 General Case

The quadratic equation from the characteristic polynomial has the form

A 2 _ (I +, 7r1 +  2 )A + L' 7 = 0.
_72 WI2  2

3.5.1 Straight Line Contours for Constant Eigenvalue As

From the quadratic equation, we can see that the constant As' contours remain straight lines in
the f and q plane as in the special case = 1 as

1r 1 2 1  2 r~71 + -)- A 2(L')- IA 1 (1

V72 If 2 72  r2J

The mesh and contour plots of A1 are shown in figures 3.7, 3.9, and 3.11 for - 10,20,30W2
dB respectively. The corresponding plots of A2 are shown in figures 3.8, 3.10, and 3.12. These
straight lines have positive slopes 2Ai(!)-2 and intercept of -(a)-1A? with the vertical line
passing through the left vertex 2

(_r1 + 110).

As a increases from unity, the slope of the contours of A2 are smaller as the range of A2 is still7r2

between 0 and 1. The slope of the contours of A, are larger as the range of A1 is of the order of
Ira rather than that of In other words, the variation of the large eigenvalue Al is essentially
along the direction of the horizontal phase-dependent variable f, and the variation of the small
eigenvalue A2 is essentially along the direction of the vertical phase-independent variable 77.

3.5.2 Parabolic Slices for Constant Phase-Dependent Variable fs

For constant f slices, the characteristic equation can be rearranged to that of a parabola in A and
i7as

A-(+L'+ 2f) 77-+- +

Figures 3.13, 3.15, and 3.17 plot for A1 And A2 vs Yr At f=-0.50,-0.25, 0, +0.25,+0.50 For -W2
10, 20, 30 d B.

We note that for given f, both coordinates of the vertex of the parabola increase with respect
to a as their derivatives with respect to a have the following formsW'2 W 2

[1(1 + 2 = [I+1±()-2 ] 0,

r22
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(1 + M ' E 1 (_ + L + 
__ _2_)

4+El)K24 -2 Y

W2_________ 1

LI
Therefore, as 1 increases from 1, those parabolas originally connected in A and 7 on theT2

left-half of the domain of interest in the f and 7 plane, i.e., f _< 0, start to depart from each other.
Those parabolas on the right-half of the domain of interest, i.e., at f > 0 and already separated
when M = 1, separate even farther as M increases.

r 2 
Ir2

The curvature of each parabola is 2(E) -1 at the vertex which is outside of the domain of
interest as mentioned earlier. For given E, the curvature is independent of the f value and all
the parabolas are exact translational copies of each other.

Taking partial derivatives of the parabolic equation with respect to 7 and rearranging, we have

-21', 2y,, --9A = W2 VE _

2 2 V72 2 W2 #2L -?
#r2

At 7 = 0, we have

1 + +, V/_2k"or2 W 2

For large M, we have the following approximationWr2

aA(f,0) ± +1.
977

The local first-order approximations to As near 77= 0 are therefore

a(f, 7) A, (f, 0) =' + 1 + /--- 2f,
7r"2  v

A 2(f, 7) ;Zt 7.

We note the important observation that the smaller eigenvalue is essentially independent of both
and ML near the baseline for large E. The ratio E essentially only affects the large eigenvalue.112 W12 W i2

The large eigenvaue is not sensitive to whether the scenario's (f,7) coordinate is close to the
baseline, i.e., whether the arrivals are highly temporally correlated and/or spatially close to each
other.

3.5.3 Hyperbolic Slices for Constant Phase-Independent Variable 7s

For constant 7 slices, the characteristic equation can be rearranged to that of a hyperbola in A
and f as

A2- 2fA - (1 + -)A + -q = 0.

In fact, for each E value, this describes a one parameter 7 family of hyperbolas in A and
that share common asymptotes. We defer the derivation and some of the characterization of
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these hyperbolas to the appendix. Figures 3.14, 3.16, and 3.18 plot for Al and A2 vs at 17

0.0, 0.25, 0.50, 0.75, 1.00 for Z = 10, 20, 30 dB respectively.7r2

For a given 77, the constant 77 slices of A, and A2 curvesas functions of are the truncated parts
of the same hyperbola in A and . Because of this characterization, (Ai)max and (A2)min occur at
the same place, {max This is convenient, as we are not yet sure whether we can consolidate the
two possible "stress" measures, A2 and L' into one. Therefore, the worst point is always at the
right vertex of the baseline, corresponding to constructive interference.

The higher 1 values, as contrasted to the special case of 1 = 1, have wider separation of7'2 7r2

the A 1 and A2 surfaces. The truncated parts of each hyperbola in A and above the isosceles-

right-triangle-like region get closer to the asymptotes, as the intersection of the two asymptotes
1+r2 )/ , 0) moves to the left from (-1,0). Above the baseline, i.e., at r = 0, the maximum

change of Al with respect to its mid-point value for > I is7r2

4 \rE 2

+ 1E

That is, the dependence of As on becomes more insignificant as ZL gets large.Ir2

3.5.4 Contours for Eigenvalue Ratio A,
A2

We need to know the shape of the contours of the eigenvalue ratio A = 1, i.e.,A2

A2

where V- assumes the expression from section 3.1

1+ 7+
[a+ 1 + (a2-2.1

This is equivalent to

4MI + 7 I + 1E)22 21- [+1+ ) {]2=(1+1 )

or 4(EI)7 41

a- + I + (- a2
2 2 (1 + 1)2-

The contours of the eigenvalue ratio -A = I for fixed 1'2 form a one-paraneter family of
A2 7r

parabolas having their vertices colocated at ( ,17) = (-(l + al)/ r2,0), i.e., the intersection

of the two asymptotes described in the last subsection, and their common tangent the baseline

77 = 0. Compared to the equipower arrival case, we note that this common vertex has moved to
the left from (-1,0) and is now outside of the isosceles-like region. As a parabola has its largest
curvature at its apex, the contours over the isosceles-like region should have less curvature as
the 11 increases. This can be seen from the dB-scae contour plots presented in section 5.2 in
figures 5.12, 5.14, and 5.16 for power ratio E = 10,20,30 dB respectively.
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We can also characterize the contours of the eigenvalue ratio = 1 for = 0 from

41 71 41
log 0  2lOg 0 ( +1)- logo +1)1+ lo + 1)2) g0()+ g0((_)2 ) .

7r 72 7r2( )2 g 0 - lg 0 ( )

Therefore, for large 1, the contours of the eigenvalue ratio = for = 0 as functions of

and q are 450 parallel lines with all three variables A = 1, 1, and 77 in dB scale. This can be

seen from the dB-scale contour plot presented in section 5.2 in figure 5.32.
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3.6 Specializing Speiser's Eigenvalue Bounds to Two Sources

As we have the exact expressions of the eigenvalues for he two-source scenario, we can examine
quantitatively some general multisource results by specializing them to this case. For example,
we consider the singular value bounds derived by Speiser and Arnold[51] for the product of two
square matrices. Specialized to the two-source scenario and in terms of eigenvalues in our context,
his expression can be written as

(12(p)o2(9V) :A mi 2p02(yOp01,Q

2 ( A2 2< m1 2

where

P / W2

0 1 1

and a,(I) is the i-th largest eigenvalue of the iermitian matrix T, and from section 3.1

It is easy to see that
a2(T) = 1±€.

This corresponds to Ai for the special case = 0, i.e., at the vertical axis, with P being identity,
the temporally uncorrelated equal-powered arrival case. We also have

2( p = (r l  [ 4(J)(1-Ip
2)1

2 .i(P )+ 1) 1 - 1 - .(

This corresponds to Ai for the special case 0, i.e., at the vertical axis, with T being identity,
the spatially orthogonal arrival case.

Given these algebraic expressions, we now interpret their physical significance. In chapter
we discussed the three main sources for the signal eigenvalue spread or causes for small signa
eigenvalues. They are the high spatial correlation 0 due to narrow spatial separation between two
arrivals, the high temporal correlation p because of multipaths, and the high strength contrast L.
We note that 0 appears in 4!, p and in P. Speiser's eigenvalue bounds for the product of two
matrices tell us that if we know the eigenvaues of T and P, then we can bound the eigenvalues,
A2 = o2(P), of the product matrix. Stated loosely, if we know the partial stress from spatial
correlation alone and that from temporal correlation together with the power contrast, we can
bound the joint stress from all of the above combined sources. From the above expressions, we
know that the partial stresses Or2%V) and a2(P) depend on 0 and p constrained on the two unit-
disks only through their magnitudes, i.e., radii, but not the angular positions. Yet the combined
stresses A2 = a (PT) depend also on the relative phasor positions. As we have used the natural
many-to-one mapping from (p, q) to ( , 77) which appeared in the eigenvalue formulas in section 3.1.
wr, note that the relative phasor positions appeared only in the phase-dependent variable 4.

For given IJp and II1, we have r; = (1 - I1 2)(1 - lpl2) and kirmax = pllol. It is of interest to
see whether Speiser's upper and lower bounds for A2 coincide with A2(-IpIII,(1 - I12)(1 - p 1))
and A2(IPlIOJ,(1 - 1012)(1 -II 2)). We also like to know whether these bounds are tight or loose
as the scenario points range over the isosceles region for the equipowered arrival a = 1 case and
the large power-ratio case.
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3.6.1 For the Special Equipower Case 41 1W2

For M = 1, Speiser's expression states that
(1 - [p)(l1 Dl)_<A2 !5 min[(1 + 1b)(1 -Ipl),(1 -Ibl)( + IPI)]

= (1 - Ipllkl)- I IM - 1I1 I.
These bounds have exactly the same expressions for A2 at the end points of the permissible -

interval between (-jIplj, ( - 1012)(1 - p12)) and (IPIk'I,(1 -1012)(1 -1p1 2)) when = 1 as shown
in the following.

For a given Yj value and ' - 1, as varies from the left edge of the permissible a-interval to72
the midpoint and then to the right edge, A2 decreases from

A2(- pI 101, (1 - 1012)(1 - Ip12))

= (1 - IPIO) - 1 Ipl1l) 2 -(1 1012)(1 - Ipl2)

= (1 - Ipll0l) - IlPI - I011,

to
A2(0,(1 - 11 2 )(1 - IP12)) = 1 - 1- (1 - 112 )(1 - I1p2),

to

A2(IPIIOI, (1 - 102 )(1 - IPl2))

= (1 + IPI1l) - 01T IP111) 2 - (1 - 112)(1 - Ipl2)
= (1 + Ipll01) - (Ipl + 1I-) = (1 - IO)(1 - Ip).

So for = 1, Speiser's two bounds for the equipower case can be identified as the eigenvalueIr2

values at the two extreme ends of the permissible phase-dependent variable i-interval. This
,-interval is on the constant phase-independent 77 horizontal line of the isosceles region with
all expressions calculated from the magnitudes of p and 0 only. For given 77, the permissible
c-interval attains its maximum width when the c-interval extends from the left- to the right-
boundary parabola. The length of such maximum i-interval increases with decreasing 77, i.e.,
when the baseline is approached. The bounds for the small eigenvalue may be loose when there
is considerable variation of the order of magnitude of the small eigenvalue along the maximum
c-interval.

3.6.2 For the General Power Ratio ML CaseWr
2

For the general a case, Speiser's expression can be similarly arranged asIr2

(1-I~I)~(--41[)( 1 ( ±1)J A

Note these bound expressions involve only the absolute magnitude of the two phasors on the
two unit-disks, i.e., only the radius but not the argument of the phasors. They are not explicitly
dependent on the other parameter

= Re(p') = IlI I cos(argp - argq$),
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which is the inner product of these two phasors and consequently contains relative phase infor-
mation between the two. But as before, for given IPI and I1, we have 7 = (1 - 102)(1 - pJ2 )
and I - IPIk{ Therefore, as in the preceding subsection for the equipower case f-f = 1,
we can draw the conclusion a priori that these bound expressions at best bound the lower part
of the truncated hyperbola in and A over the permissible phase-dependent variable c-interval
corresponding to the given value of

7 = (1 - 1012)(1 - p12).

For given value of , the exact eigenvalues depend on the two complex phasors on the unit-
disks, p and 0, through the two derived bounded real numbers and i. In contrast, the two
bounds' expressions involve the magnitude of the two phasors, i.e., two different real numbers.
Therefore, it is much simpler to browse the hyperbolic slice plots to visualize the best non-explicitly
c-dependent bounds one can possibly have than to analyze the particular bounds derived by
Speiser. From our early characterization of the A surfaces, we know that the dependence of As
on becomes more insignificant as El gets large. We expect that such c-independent boundsW2

perform better in this region. Naturally we must bear in mind that the original form of these
bounds are applicable to the general multisource arrival scenario and they may serve some useful
purpose there.

We have used plots to give some indication of the i-dependent nature of the eigenvalues. We
can also give some analytical indication of the same phenomenon for the most important area. As
the q = 0 baseline is where A2 = 0, we have more quantitative information about the -dependent
or a-independent nature of A2 in this neighborhood for given values of ff- because of the following
analytical characterization. Near 7 = 0 and at the three particular C values, we have for - I

This indicate the significant c-dependence of A2 . Near q = 0 and for large 1, we have instead

i.e., essentially c-independent.
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Chapter 4

Fractional Beamwidth Separation
Between Two Plane Waves
Impinging on a Uniform Line Array
(ULA)

Even though we only assess those algorithms applicable to general sensor array configurations,
we still need to understand the results for plane waves impinging on a ULA, especially those
simulation results that could be expensive to duplicate for general arrays. After all, more than
half of the theoretical and numerical development on ABF and high-resolution DF are specialized,
occasionally unnecessarily, to ULA. Many ULA specific results can shed light on the general array
as well.

Frequently in the direction-finding literature, the stress to a direction-finding scenario in the
context of close arrivals is expressed in terms of the fractional beamwidth separating the two
arrivals, with or without the number of elements of the ULA prominently specified. There seems
to be the implicit assumption that the stress depends mainly on the fractional beamwidth which
has already folded into it the information about the number of sensors, N, used in the array.
In other words, the figures plotted against fractional beamwidth for a ULA using some specific
number of half-wavelength-spaced elements are indicative of the behavior for another ULA using
different number of elements. Therefore, it is useful to assess the validity of this assumption for
the uncorrelated special case for ULA, as it is the easiest one analyzed. Here, we express the
stress in terms of the smallest eigenvalue A2 Cx q = 1 - 1.!!2, which is good for close arrivals and
all values near the 7 = 0 baseline region, where 4 is derived in the usual fashion.

4.1 Fractional Beamwidth Measurement for Arrival Separation

Ofrac-bw
Let the elements' location of the ULA have the following coordinates,

[(xn,yn),n= 1,...,N] with xn = (n- 1)d, yn =0,
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where d is the uniform interelement spacing. Define as in [23, page 38] or [52, page 48] the reduced
angular variable

0 = sin c - sin a0 = 2 cos -(a+ a) sin(a - a),
22

where a and a0 represent the directions of two arrivals relative to broadside. Let k be
2r/wavelength, i.e., the wave number. The normalized inner product of the two steering vectors
corresponding to the two directions of plane wave arrivals a and ao is

= (1 + ejkdo + '"+ " ej(N-I)kdO = 1 ejN kdO .
- 1

N ejkd# 1
SJ (N1l)kdO sin(!NkdO)

N sin('kdO)

In section 3.1, we listed the known property that the inner product of two steering vectors
for plane waves impinging onto pairwise symmetric arrays is real. The above spatial correlation
equation indicates that the phase term will disappear with the change of the coordinate origin
from one end to the center of the ULA.

For a continuous line array, the standard beamwidth definitions are inferred from the first
null of the radiation pattern in units of the reciprocal of the array aperture. From the above
displayed equation, it is clear that for the discrete ULA, the length of the array aperture should
be interpreted as Nd, not (N - 1)d. For ULA, the 4_dB_down_bw_in_O beamwidth coincides with
the standard beamwidth, see [22, eqns. 4.5,4.34,4.35] for example. However, the 4-dB down
beamwidth definition can be readily extended to general arrays whereas that of the standard
beamwidth cannot. For example, the log-periodic array does not have nulls in its radiation
pattern. This is based on the equivalent Logarithmic Period Modulated (LPM) or Hyperbolic
Frequency Modulated (HFM) waveform result [11] where i he sidelobe magnitude square has a
positive term in additional to the familiar sinc-square term. We will also relate the separation
between two close arrivals in terms of the fractional beamwidth for the mechanical directions of
arrivals a and a0 to that in terms of the electrical phase angle 0.

The 4-dB down beamwidth in the electrical phase angle, kdO, from element to element along
the
ULA (4_dB_down_bw.in_0) is defined as the reciprocal of the array aperture by [5, eqns. 6-34,11-
12,11-14]

4_dB_downbwin_O = [ Nd gh]' 2r
[wav el-ength - Nkd'

where k = 27r/wavelength. The corresponding 4-dB down beamwidth relative to the two direc-
tions of arrivals a and ao (4_dBdownbwrelto_(a + ao)/2) is defined as the reciprocal of the
effective array aperture by

4_dB_downbwrelto_(a + "2 c (a + ao) 1
2r

Nkdcos !(a + ao)"

The separation between two arrivals can be expressed as Ofrac_bw in terms of fractional
beamwidth by

0 N kdO NdO
Ofrac-bw = 4_dB_downbwinO - 2r - wavelength'
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or equivalently 21r
kdO= -8 frac-bw"

The terminology makes sense as for close arrivals

a - ao 2sin (a-a0)
4_dB_downbwreLto_ (a + ao)/2 Ndcos (a+a0)

1 o o1 [_Nd_ ]

= 2sin I(a - ao)Cos(a + a) Nd
2 2 [wavelength]

= (sin a - sin ao) Nd

= 0 x apertureinunits.ofwavelength = Ofracbw.

The above development is similar to that reported by Evans, Johnson, and Sun [15].
The normalized inner product of the two steering vectors corresponding to the two directions

of arrivals a and ao is

1 . e-Ifracbw sin(irOfracbw)

N=-e'-- NN - sin(7kVrOfracbw)•

Therefore, we have
1 sin(rOfac-bw)

14) =N sin(klrofracbw)

For closely spaced arrivals, the above equation can be approximated by
1- [rOfracbw] +... 1- 1I I  1

14)1 1 -i [1 fabw~ 1 - 6(1 - N2)(r~fracbw)2.
1 -( V[ fracrbwl + 

) •

For very close arrivals, 4 z 1, i.e., i' location on the unit-disk is on the circumference. The
horizontal axis has the following intei. ,etaticn now: - Re(p) = IpI cos(argp).

4.2 The Smaller Eigenvalue A2's Negligible Dependence on the
Number of Elements N after Using 6 frac_bw for the
Equipower Uncorrelated Case

For uncorrelated and equal strength arrivals, the only stress to the direction-finding scenario is
the angular separation between the arrivals, therefore

A2  11 1 sin(irOfrac-bw)
N I sin(klrOfracbw)

For this case, a discussion of the smdler eigenvalue A2 directly results from that for the magnitude
1 41 of the generalized cosine of the steering vectors of the two arrivals. An approximation for A2
for closely spaced arrivals can also be obtained via

A2  1 012 1 1 [1 sin(rOfracbw) 2 1 12

2 2 2 2 [ sin(kOfracbw) 6(1 - -)(w fracbw) .
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All these expressions for 0 and il depend on both Ofrac-bw and N.
For small 6frac-bw associated with the stressing scenario of close arrivals, say ofrac-bw !_ 0.1,

the last equation shows that A2 increases quadratically with 6 frac.bw and increases with increasing
N. See figure 4.1. The dependence on N is noticeable only for small N but becomes rapidly
negligible for large N. See figure 4.2. The last equation indicates that the variation of Ofrac-bw
for N > 10 is only 1%. The A2 value at N = 3 is 90% of that at N = oo. Therefore, one can
safely ignore the A2's additional dependence on N.

As ofrac-bw increases, say 0.1 < frac-bw 1.0, the unbounded parabola approximation is
obviously less valid as the (1 - sinc2)-like function is bounded above by 1. We note that the
stress in terms of A2 is among the lowest possible near ofracbw = 1.0. When the two arrivals are
separated by exact multiples of the Raleigh beamwidth, the inner product between the two steering
vectors is zero, i.e., the two steering vectors are orthogonal. The A2's additional dependence on
N after using ofrac-bw is even smaller than the previous 0frabw < 0.1 case. See figures 4.3 and
4.4. We note that in both figures, A2 = 1 at Ofracbw = 1.0 regardless of the values of N, as it
should.

If we continue the plot beyond 0frac-bw = 1.0, the ripple phenomena of the A2 versus 0fracbw
will show up prominently as indicated in figures 4.5 and 4.6. This is associated with the sidelobes
of ULA, which depends on both Ofrac-bw and N. That is, the ( , 77) will stay near (0, 1), the
apex of the isosceles-right-triangle-like region. The stress to such a direction-finding scenario
in terms of A2 can only come from the two arrivals' strength ratio irl/r2 which will show up
in the A1/A2 ratio and/or source amplitude correlation p such as from multipath. Overlooking
the ripples, the (1 - sinc2)-like function gets closer to 1 as 0frac-bw increases. Therefore, the
dependence on N is not significant either. We also notice the grating lobe phenomena such as at
(0frac_5w, N) = (3,3), (6, 3),(9, 3), (6,6), (9,9) in figures 4.7 and 4.8. See [52] for explanations.
In figure 4.8, we have chosen to plot the A2 = 1 - I4 slices vs N at Ofrac-bw = 0.5: 1 : 9.5, which
correspond to the sidelobes of the CBF.

However, because of the ripple effect, the smaller eigenvalue may even decrease when more
sensors are used while everything else is the same. This will cause some undesirable phenom-
ena when noise is brought in and a unit-weighting signal space method is used. For moderate
SNRs, the error variance of each eigenvector calculated from the sample data covariance matrix is
roughly proportional to that particular eigenvalue. Ottersten, in fact, produced some interesting
asymptotic results illustrating the detrimental effect to the DOA parameter standard deviation
when plotted as a function of the number of sensor elements for the unity-weighting algorithm for
ULA[38, pages 68-69]. As he fixed the mechanical angle separation between the two arrivals, the
fractional beamwidth changes as the number of sensor elements varies. The (0frac-bw, N) points
trace out a curve in the base plane of the mesh and contour plots in figures 4.5 and 4.6.

In conclusion, the fractional beamwidth notion is a useful concept for assessing the stress to
a direction-finding scenario in terms of the normalized smaller eigenvalue A2. It consolidates the
effects of arrival separation, sensor element spacing, wavelength, and number of sensor elements
into one entity.
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Figure 4.1: A2 =1 -jjslices vs Ofracmbw <0.1 at N=3,6,9,12,15,18,21 for ULA.
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Figure 4.2: A2 = 1 - 101 slices vs N at 0 frac-bw = 0.01 : 0.01 : 0.10 for ULA.
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Figure 4.,'-: Uies-h Plot Of A2 =1 - over 1 < 9 frac-bw < 10 and N=3:1:22 for ULA.
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Figure 4.6: Contour plot of )A2 1- over 1 < Ofrac-bw < 10 and N=3:1:22 for ULA.
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Chapter 5

Plots of Signal Eigenvalues and their
Ratio in dB Scale

The plots of the same information, or function, using direct scale and dB scale in the vertical
axis have their individual merits. The direct-scale versions show the parabolic and hyperbolic
sections as well as the straight line contours in their natural coordinates as derived from the
analytical studies. Versions using the dB scale better illustrate the multiplicative dependence
of the eigenvalues on sorme of the three independent parameters. In addition, the effect of the
smallest dominant eigenvalue is relative to the threshold setting, which is frequently expressed in
dB scale; the condition number can be exhibited more compactly in this way.

While the parabola sections are all translation copies of each other for given _ values in7r2
the direct-scale coordinates, one cannot recognize such relations from the dB-scale plots. For
example, the vertical intervals (0,9) and (1,10) are translation copies of each other and can be
recognized as such easily in the direct-scale plot. But their images in the dB scale are qualitatively
different because of the nonlinear nature of the logarithmic function, especially near zero, which
is so important for our study.

In section 5.1, we first display the slices of the two signal eigenvalues A1 and A2 in dB along
constant phase-independent variable 7 and along constant phase-dependent variable for power
ratio L = 0, 10,20,30 dB. Next, their ratio, which is the difference in dB of the large and small7r2

signal eigenvalues, will be examined. In sections 5.2 and 5.3, we will find that the variation
of signal eigenvalue ratio \ across the phase-dependent variable is not significant. We focus
attention to the condition number's behavior over the vertical axis = 0 of the isosceles region
in section 5.4.

While the parabola and hyperbola characterization described in sections 3.4 and 3.5 pertains
only to linear-scale plots, we retain for convenience such terminology even for those functional
representation in the semilog coordinates used in this chapter.

As 77 approaches 0, the small eigenvalue A2 and the eigenvalue ratio ' tend toward - and
+ oo dB respectively. Similarly, as 7 approaches 0 for the equipower case, ' = 0 dB, both theW2
upper A, and lower A2 hyperbolas tend toward their asymptotes intersecting at -oo dB. Because
we cannot display ±oo dB, we choose to stop at a small value of il = -13 dB, which corresponds
to spatially orthogonal arrivals with temporal correlation of 97.5%, or temporally uncorrelated
arrivals with a 1 fractional beamwidth spacing for a ULA.

4
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5.1 Slices of Signal Eigenvalues A, and A2 in dB along Constant
Phase-Independent Variable r and along Constant Phase-
Dependent Variable for Power Ratio 11 = 0, 10, 20,30 dB

7r2

We plot the two signal eigenvalues A, and A2 as functions of the phase-dependent variable and
the phase-independent variable qj for four given power ratio !s.

* A, And A2 At - -0.5,-0.25,0,+0.25,+0.5 For Four Z' in figures 5.1, 5.2, 5.3, and 5.4.7r
2

e A1 And A2 At j7 0.05,0.25,0.50,0.75, 1.00 For Four ! in figures 5.5, 5.6, 5.7, and 5.8.7r2

For 1 = 0 dB, the upper and lower sheets of hyperbolas and parabolas, the latter with7r2

negative , are all contiguous. They do not appear so only because of the coarse grid systems we
used in making these plots, i.e., the left boundary curve of the isosceles region does not fall on
the grid points. We mentioned at the beginning of this chapter that it is not possible to display
the asymptotes simultaneously because they intersect at -oo dB. We note that straight lines in
the linear-scale plot become curved in the semilog plot. Over the apex of the isosceles triangle
both A, and A2 show the common 0-dB value as they should, in both hyperbolic and parabolic
slice plots.

When 21 increases from 0 dB, over the apex of the isosceles triangle A1 and A2 are separatedTr
2

farther and farther duplicating this increase. Because of the normalization convention adopted for
the eigenvalues with respect to the sensor level signal power of the weaker source in section 3.1,
over the apex of the isosceles triangle A2 is always at 0 dB. The large eigenvalue A1 curves are
bundled closer in both directions of the phase-independent variable 77 and the phase-dependent
variable . The variation of the small eigenvalue A2 appears more and more only in the phase-
independent variable q/. As the eigenvalue ratio in dB is the difference between the large and
the small eigenvalues in dB, the variation in the ratio will be essentially from that of the small
eigenvalue in the phase-independent variable q/, as will be seen from the next three sections.
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Figure 5.1: A, and A2 in dB vs q~ at =-0.5, -0.25,0 0+0.25, ±0.5 for 0' - dB.
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Figure 5.2: A, and A2 in dB3 vs 77 at -0.5, -0.25,0, +0.25, ±0.5 for ~' 10 dB.
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Figure 5.4: A, and A2 in dBi vs r, at -0.5, -0.25,0, +0-25, ±0.5 for E~r -30 dB.
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5.2 Four Sets of Signal Eigenvalue Ratio Plots for Power Ratio
= 0, 10, 20,30 dB

We provide, for each of the four given power ratio 1 mesh and contour plots of signal eigenvalue
ratio A as function of the phase-dependent variable and the phase-independent variable 7I

over the rectangular grid [-1:1:0.05]x[0.05:1:0.05], next slice plots along constant phase-dependent
variable and then along constant phase-independent variable 77. The vector [-1:1:0.05] contains
the numbers from -1 to 1 with 0.05 as increment in . The vector [0.05:1:0.05] contains the
numbers from 0.05 to 1 with 0.05 as increment in 17.

" Mesh and contour plots of L in dB as function of and q in figures 5.9, 5.11, 5.13, and
5.15, and in figures 5.10, 5.12, 5.14, and 5.16 respectively.

* Slices of A in dB at = -0.5,-0.25,0,+0.25,+0.5 for "' = dB in figures 5.17, 5.19, 5.21,
and 5.23.

* Slices of in dB at r=0.05,0.25,0.50,0.75,1.00 for EL = dB in figures 5.18, 5.20. 5.22, and
5.24.

For ! = 0 dB, the mesh plot of the signal eigenvalue ratio \ in figure 5.9 indicates that
the ratio over the left boundary curve of the isosceles region is 0 dB, as it should be. We expect
the slices of the eigenvalue ratio -A surface for negative constant , phase-dependent variable, inA2
figure 5.17, and for all constant 77, phase-independent variable, in figure 5.18, to intersect the 0-dB
abscissa axis. Again, they do not appear to be so only because of the coarse grid systems used in
making these plots, i.e., the left boundary curve of the isosceles region does not fall on the grid
points.

We notice from these two slice plots, figures 5.17 and 5.18, that the eigenvalue ratio -) tends
toward oo dB as 77 approaches 0. This illustrates the oo discontinuity of the eigenvalue ratio

A2

at the lower left corner of the isosceles region. The limit approaching from the baseline of the
isosceles region is oc, while that approaching from the left boundary curve of the isosceles region
is 0. Note at this corner, both signal eigenvaues A1 and A2 are zero (-co dB) and their ratio
is indeterminate. This may be related to the difficulty mentioned in subsection 2.3.3. We have
discussed in subsection 3.4.4 that the contours of the eigenvalue ratio -' = 1, in figure 5.12, are
the same one-parameter family of parabolas introduced there with the conversion between the
parabola parameter - = p and eigenvalue ratio - = 1 as

2 2-p+NV -4p
+ 1 P

Because of the difficulty of displaying oo and discontinuity, the apparent absence of these at the
left corner in figures 5.9, 5.17, and 5.18 should be interpreted with care.

When a gets larger, as in figures 5.10, 5.12, 5.14, and 5.16, the contours get more andr2

more horizontal, which means that the dependence of the signal eigenvalue ratio - on the two
parameters and Y will be mainly from the phase-independent variable 77. In subsection 3.4.4, we
found that the contours of the eigenvalue ratio = 1 form a one-parameter family of parabolas

having their vertices colocated at (, (-!(I + 0), ee figures 5.10, 5.12, 5.14, and

5.16. Furthermore, in the 3-d ( , 17, 2l) ccordinates, these colocated vertices of the parabola
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contour slices when projected onto the ( , il) coordinate plane coincide on the shared c-axis with
the intersection of the common asymptotes for the 7} parameter family of hyperbola slices in A
and for constant phase-independent variable 77s when projected onto the ( , A) coordinate plane.
These families of hyperbola slices are displayed in figures 3.6, 3.14, 3.16, and 3.18.

The comments at the end of section 5.1 that the variation in the ratio is essentially from that
of the small eigenvalue in the phase-independent variable q can be confirmed by comparing the
ratio plots in figures 5.18, 5.20, 5.22, and 5.24 with the small eigenvalue plots figures 5.5, 5.6, 5.7,
and 5.8.

From figures 5.9, 5.11, 5.13, and 5.15, one observes that the mesh surfaces are lifted away from
the 0-dB plane and appear flatter and flatter when ! gets larger. This must be interpreted with112

care because of the inadequate display coverage with 77 stopped at -13 dB and the perspective
angle showing the surface at a = 30 dB flatter than it is. While there is much less curvature asIr2
compared to the equipower arrival ! = 0 dB case, there remains considerable variation of theW2

eigenvalue ratio - along constant phase-independent variable q/. These plots are produced by the
PC-MATLAB software which auto-scales the data to fit a plotting area of given size. If a common
absolute scale is used for all these mesh plots for power ratio 1 - 0, 10, 20, 30 dB, the last three7r2

mesh surfaces would appear more as translational copies of each other. This can be seen from
examining its accompanying slice plots along constant phase-dependent variable and then along
constant phase-independent variable q7. There, the vertical scales are more comparable as the 0
dB reference is not included as in the mesh plots. These will be made more clear in section 5.4.

For all slice plots, we note that the apex of the isosceles region always occupies the lower right
hand corner for the upper slice plots of constant phase-dependent variable , as in figures 5.17,
5.19, 5.21, and 5.23, and the middle of the abscissa axis for the lower slice plots of constant phase-
independent variable 77 as in figures 5.18, 5.20, 5.22, and 5.24. At the apex, the signal eigenvalue
ratio - always equal to the power ratio fl, as it should.
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Figure 5.9: Mesh plot of -A in dB as function of and ij for '--0 dB.A2  _r
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Figure 5.10: Parabolic contour plot of NI~ in dB as function of and 2~for -0 dB.A2  __2
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Figure 5.11: Mesh plot of :I' in dB as function of. and 77 for 10 dB.
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Figure 5.13: Mesh plot of in dB as function of and r1 for =20 dB.A2 Wr2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2-

0.1 -
0 05 _ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

xi
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Figure 5.15: Mesh plot of ' in dB as function of and for 1L- 30 dBl.
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5.3 Plots of Signal Eigenvalue Ratio -' Over a Small Phase-
A2

Independent Variable q = 0.05 as Function of
Phase-Dependent Variable and Power Ratio a(dB)7r"2

We plot, for a small constant q = 0.05, signal eigenvalue ratio A' as function of the phase-
A2

dependent variable and power ratio , then plot slices along constant power ratio f and thenWf2 '72

along constant phase-dependent variable .

" - at M(dB)=0,5,10,15,20,25,30 for 71=0.05 in figure 5.25.

" - at= -0.50,-0.25,0,+0.25,+0.50 for 77=0.05 in figure 5.26.A2  -. 0 02,,+.5 05

" Mesh and contour plots of - in dB for qj=0.05 in figures 5.27, and 5.28.

As we mentioned at the beginning of the chapter, we choose to stop at i = -13 dB. From
the siice plot of the signal eigenvalue ratio - along constant power ratio a in figure 5.25, we see

A2 7r
that the spread in the eigenvalue ratio is smaller at the constructive interference side, > 0, than
at the destructive interference side, K< 0. The eigenvalue ratio is an incrzeasing function of the
phase-dependent variable but this dependence levels off as the power ratio a increases.7r2

From the slice plot of the signal eigenvalue ratio Ai along constant phase-dependent variable
in figure 5.26, we see that the spread in eigenvalue ratio narrows quickly as the power ratio Z1r2

increases. This means that the dependence on the phase-dependent variable becomes negligible.
The trend is a 450 line in the log-log plot, which means that the signal eigenvalue ratio - becomes
directly proportional to the power ratio 1 in the direct scale.

The above observations are reinforced in the contour plot of figure 5.28 showing signal eigen-
value ratio -A as a function of the phase-dependent variable and power ratio 1I. The variation ofA2  72
the contour is mainly in the power ratio i direction. Its change in the phase-dependent variableW2

direction is pronounced only for a < 15 dB.7
2

Except when a paper focuses on the effect of the temporal phase difference, the phase of the
source correlation is frequently implicitly assumed to be zero. Often we have to infer this from the
following clues: the source correlation coefficient used in evaluating asymptotic performance is a
positive real (without discussion), or identical complex source amplitudes for the two arrivals are
used in numerical simulation. The position of a stressful scenario point in the isosceles region can
be anywhere on the right-half of the constant q line parallel to the close-by baseline. For these
highly correlated equipower arrivals, we will show that the effect on the eigenvalue ratio from
changing the phase of the source correlation from 900 to 0 ° can be as high as a 6-dB increase.
The following paragraphs explain the possible 6-dB increase of the eigenvalue ratio adjustment.

The large eigenvalue A1 near the baseline corresponding to temporally highly correlated arrivals
can be estimated using the asymptotes' behavior, because the cross sections of the As' surfaces for
constant Ys are hyperbolic slices, as derived in subsection 3.1.3 and shown in figure 3.6. Depending
on the relative location of the scenario point to the right boundary curve of the isosceles region,
the effect on the large ei -nvalue A, from changing the phase of the source correlation from 900
to 00 can be as high as a 3-dB increase.

The small eigenvalue A2 can be estimated from the following fact derived in subsection 3.4.2
and shown in figure 3.5. Near q = 0 and at the three particular values, we have

A2 (- l, ,7) -oo , A2(0, 2 ) 2 , 4
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I igure 5.27: Mesh plot of i ini (III as f~lncjlon of and '1 for 77=0.05.A2  1r
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Depending on the relative locatior of the scenario point to the right boundary curve of the isosceles
region, the effect on the small eigenvalue A2 from changing the phase of the source correlation
from 900 to 00 can be as high as a 3-dB decrease. See figure 3.6 to reinforce the above discussion.

For the case of almost orthogonal spatial arrivals, the scenario point is near the vertical axis
of the isosceles region to start with, no adjustment of the eigenvalue ratio is needed as we move to
the 0' temporal correlation. When a scenario is stressed both temporally and spatially, then the
relative position of the ( , 77) on the constant q line as measured by the fraction distance between
the vertical axis to the right boundary of the isosceles region is almost one. In this case, the full
6-dB adjustment is needed.

This can be seen from the following. Given the complex pair (0, p), we calculate the real pair
(? ,?) from

r= (1 - j0[2 )(1 - p12),

= Re(p0*) = IpII cos(argp - arg 0).

For this 77, the boundary point is defined in section 3.2 by

I Imax = (IP01)a -- 1 -/-.

The fractional distance for a 00 temporal correlation scenario point is expressed as

kI1 Ipll~l

ZImax given, 1 -(1 -I 01)( - IP-1)

When both fpl ; 1 and 101 ; 1, we have

1 -: IplI01(1 + 2V(1 - -101)(1 - 1pl) ) Ip1101 ;Z 1,
IZlmax given ,7

The above discussions about the effect of 6-dB increase on the eigenvalue ratio for highly
correlated equipower arrivals from changing the phase of the source correlation from 900 to 00
can be correlated with figures 5.25 and 5.26 for the small phase-independent variable 71 = 0.05.
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5.4 Plots of Signal Eigenvalue Ratio -' Over the Vertical Axis
A2

= 0 as Function of Phase-Independent Variable q, and
Power Ratio a(dB)

Having ascertained that for !I > 10 dB the variation of signal eigenvalue ratio across the
phase-dependent variable is not significant, we can focus attention to the condition number's
behavior over the vertical axis = 0 of the isosceles region.

We plot for = 0, signal eigenvalue ratio i as function of the phase-independent variable
77 and power ratio ! next plot slices along constant power ratio M1 and then along constant712 7r 2

phase-independent variable q.
There are two versions of these plots. The first version has the phace-independent variable q in

dB scale covering [-40:0:1], following the convention explained in the previous subsection. The sec-
ond version has the phase-independent variable q in direct or linear scale covering [0.05:1.00:0.05].

5.4.1 With Phase-Independent Variable q in dB Scale

Signal Eigenvalue Ratio -' (dB) vs Phase-Independent Variable q(dB) Curves at 7
Constant Power Ratio Ei(dB) for - 0

From figure 5.29 for = 0 with seven curves of '\(dB) vs q/(dB)=-40:l:0
at M,(dB)=0,5,10,15,20,25,30, we ha-.e the following observations.

At the 0-dB right edge with 7= 1 which corresponds to the apex of the isosceles-right-triangle-
like region, each of the seven curves corresponding to the 7 1(dB) sections intersects the dB
axis at exactly the same values of each 11 curve's labelling, as they should. From r:5 -10 dB or <
0.10 down, i.e., except for the last two vertical grid intervals, these 7 curves are almost all straight
lines with slope of -1 in this log-log plot.

We notice the top 3 curves corresponding to 2=30, 25, and 20 dB passing through the
intersections of horizontal and vertical grid lines. For example, the top curve with a=30 dB
passes through these grid points: (77, !) = (0, 30), (-10, 40),(-20, 50),(-30, 60), and (-40, 70).
Note the equal spacing among the three curves. When ! > 10 dB, we have

W 2

A 7r

or that the stress from 77 and ! is multiplicative (divisive) in the direct scale. In dB scale, this
72

is additive, i.e.,

- (in dB) ; ( -1)(in dB) - 17(in dB).
A2  7

This approximation starts to degrade when 11 is small and 71 is close to 1. So if this additive
or multiplicative relation were perfect instead of being just approximate, the =10-dB curve will

intersect at the left vertical line. 7 = -40 dB, to arrive at -=50 dB, instead of the 51-dB point.
But we can see that the approximation even for the 1'=10-dB curve is excellent.

For t/ larger than 0.10, the lowest 2 curves corresponding to a=0 dB and 5 dB exhibit
noticeable curvature, especially for =0 dB near 71=1. An original 10-dB separation at q7 = 0 dB
between the two curves - 0 dB and 1 - 10 dB is reduced to 5 dB for 71 < -5 dB.
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For the !L=0-dB curve near q/=l, the apex point area, the stress to the direction-finding
scenario due to multipath correlation between arrivals and/or closeness in spatial separation
increases much faster than large " dB curves as q decreases. This is caused by the infinite slope7r2

of A with respect to rl at the apex for the equal-power arrival case. Because of this and the
variation of in the direction, we need to examine the surfaces of A, or A2 or their ratio in
detail for the a=0-dB case.

When 11 ; 0 dB and 7 is less than 0.10 (or -10 dB), we observe that1r2

A-(. dB) z -7/(in dB) + 6.

This extra 6 dB accounts for the preserice of the infinite slope of A with respect to 7/at the
apex for the equal-power arrival case.

Recall that these were predicted in subsection 3.3.3.

Signal Eigenvalue Ratio \(dB) vs Power Ratio !(dB) Curves at Five Constant
Phase-Independent Variable t7(dB) for - 0

From figure 5.30 for = 0 with five curves of -(dB) vs !(dB)=0:1:30
at 77(dB)= -40, -30, -20, -10,0, some of the just mentioned observations can be made clearer
from a different perspective.

The lowest curve corresponds to i7= 0 dB, i.e., at the apex point. This perfect straight line
with slope of 1 indicates the identical relation between AL and 'I, as it should. The five constantA2  7r2
r/curves are equally spaced in dB. The intersections of these curves with the vertical grid lines
reflect how well the corresponding equal spacing can be carried over for A1L for different 77 values.A?
We see that equal spacing is maintained much better for a > 10 dB than for 1 < 10 dB. In"r2 1r2

particular, near the left vertical edge, which corresponds to equal strength arrivals, we can see
that the stress rises much faster when r7 decreases from 0 dB, as the DOAs get closer and/or
source amplitudes get more correlated. On the other end, the rate of stress rising with respect to
the Z abscissa near this left boundary is milder than other E, values. in other words, the slopes"12 7r2

of these five curves, except the lowest one corresponding to a = 0 dB, are less than one.7r2
Recall the parabolic slice characterizations for both the equal-arrival special case and the

general case over the vertical axis of the isosceles-triangle-like region. For the equal-arrival special
case, the slope of A2 with respect to 77 is oc at the vertex and is at the baseline. For the general2
case with a > 10 dB, the slope is about 1 throughout the entire region.7r2

The straight lines with slope of +1 for 1 > 10 dB gives another indication of the additive orIr2

multiplicative dependency of the total stress on the two contributing factors a, and 77 mentionedr2

above.

Mesh Surface and Contour Plots of Signal Eigenvalue Ratio -(dB) over Phase-
Independent Variable qj(dB) and Power Ratio fl(dB) for =D

Figures 5.31 and 5.32 for = 0 are the mesh surface and contour plots of A(dB) vs ij(dB)=-40:1:0
and a(dB)=0:l:30.

The previous two plots just discussed are the slices resulting from vertical cutting planes
intersecting the mesh surface as displayed here. The contour plot is that resulting from using
horizontal cutting planes. The lack of curvature or the straight contour lines for a > 10 dB
and the essential equal spacing of the contour lines reinforces the earlier discussions. We have
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Figure 5.31:. Mesh plot of -A-(dB) vs 77(dB)=-4O:1:0 and M(dB)=O:1:3O for =O.
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discussed in subsection 3.5.4 that for large 11, the contours of the eigenvalue ratio - I for
0 as functions of -. and q axe 450 parallel lines with all three variables A = I LL and 77 in
~=02 fucton oi 7r2 - 1n ~i

dB scale. All these suggest that a 3-d map with power ratio i as third coordinate is not needed.7r2
The following plots are the "71 in direct scale" versions of the above "y; in dB-scale" plots.

5.4.2 With Phase-Independent Variable r in Direct Scale

Signal Eigenvalue Ratio - (dB) vs Phase-Independent Variable tj Curves at Seven
Constant Power Ratio Z'(dB) Values for = 0
Figure 5.33 for = 0 has seven curves of -(dB) vs 71=0.05:0.05:1.00 at (dB)=0, 5, 10, 15, 20,

25, 30.

Signal Eigenvalue Ratio j(dB) vs Power Ratio E(dB) at Five Constant Phase-
Independent Variable 77 Values for = 0

Figure 5.34 for = 0 has five curves of AL(dB) vs EL(dB)=0:l:30 at 77=0.05, 0.25, 0.50, 0.75, 1.00.

Mesh Surface and Contour Plots of Signal Eigenvalue Ratio L(dB) over Phase-
Independent Variable rj and Power Ratio Z(dB) for A=0

Figures 5.35 and 5.36 for = 0 are the mesh surface and contour plots of -\(dB) vs 77=0.05:0.05:1.00
and 1(dB)=0:l:30.

I2

We find that the earlier ",q in dB-scale" plots convey information more effectively and com-
pactly than these "17 in direct-scale" ones. But the latter ones can be considered as magnified look
of the earlier ones of the relatively benign region near the apex with 7 > -ts 10 dB or > 0.10.
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Figure 5.35: Mesh plot of -A(dB) vs 77=0.05:.05:1.00 and !L(dB)-O:1:30 for =O.
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Chapter 6

Some Cadzow s and Ottersten's
Scenarios

In this chapter, we will assess some scenarios used by Cadzow[8] and Ottersten[37] in contrasting
their results reported on performance comparison between different ds. We first summarize
some approximate results derived in the preceding chapters that will be used in later example
scenario discussions. These easy-to-remember formulas enable one to exercise back-of-envelope
assessments of scenarios.

6.1 A Concise Review of Approximate Formulas Derived Early

Among the three parameters ( , 7, !L.) appearing in the eigenvalues' expressions, 7 is the most
important one. The many-to-one mapping from (p,o) to ( ,ij), or from the Cartesian product
of the temporal and spatial correlation unit-disks onto the isosceles-like region, is defined in
section 3.1 as

q = (1 - 10 2)(1 - jpI2),

= Re(pY*) = I pI1l cos(argp - argq5).

When the scenario is stressful, 77 is small and the corresponding annuli with unit outer radius are
thin. The area of the temporal correlation p annulus can be approximated by the following (aside
from a factor of ir):

I - Ipl' = (1 + Ipl)(1 - Ipl) ;z 2(1 -- 1p1).

For two closely spaced plane waves impinging on a uniform line array (ULA), we have the ap-
proximate formula

177 ; -(irOfrac_bw)2,

or

77(in dB) z 5 + 2 x Ofrac-bw(in dB),

as discussed in section 4.2. The formula is at least 90% accurate regardless of the number of
sensor elements.

For Z' = 0 dB and 7< -10 dB, we have the approximate formula for =0

A' (in dB) ;. -i7(in dB) + 6,
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as derived in section 3.3. For these highly correlated equipower arrivals, the effect on the eigenvaue
ratio from changing the phase of the source correlation from 900 to 0' can be as high as a 6-dB
increase, as derived in section 6.3.

For 1 > 10 dB, we have the approximate formula for = 07r2

AL(in dB) ; (ztr)(in dB) - q(in dB),A2 7r2

as derived in section 3.3. The effect on the eigenvalue ratio from changing the phase of the source
correlation from 900 to 0° is negligible for " > 15 dB as discussed in section 5.3.W2

6.2 Temporally Uncorrelated Arrivals

The most stringent scenario used by Cadzow for two nearly broadside uncorrelated arrivals im-
pinging on a circular arc array of eight sensors equally spaced at 30 is now discussed. For f0=15
MHz, a 300-m diameter is 15 wavelengths. As the circular arc is nearly linear, the spatial correla-
tion of the steering vectors of the arrivals for the exact circular arc array is estimated by that of
an approximating ULA. A 24°-arc i with a 7.5-wavelength radius presents an effective aperture of

7.5 wavelength x24' x 2r= 7r wavelength

for broadside DOAs. The 4-dB down Raleigh beamwidth 4_dBdownbw_in_0 is 18.2'. The closest
spacing between two arrivals used by Cadzow is 30 which corresponds to a fractional beamwidth
of Orac-bw = 0.16 for an approximating ULA.

For a ULA with eight sensors and fractional beamwidth Ofrac_bw = 0.16, we read off from
figure 4.3 the value of A2 = 1 - -14 dB or q] = -11 dB as we noted A2 ; 1 in section 4.2 for2
uncorrelated and equal strength arrivals. The accuracy of reading off curves is probably no better
than using the approximate formula for closely spaced arrivals which yields 2(7r x 0.16)2 ; -L
or -11 dB. Then we read from the curve for 1 = 0 dB in figure 5.33 with 77 in direct scaler2

the value of 16 dB. This can also be obtained from the approximate formula which is
A2valid for = - 0 dB and 77 less than -10 dB. So, the optimum weight ratio is like 40:1. The7t

2

tradeoffs conducted by Cadzow were mainly between his (unweighted) algorithm and Det-MLE.
The unweighted algorithm was outperformed by Det-ML, but not by much.

The ratios used by Ottersten for his ULA scenarios are typically in the area of 30 dB, i.e.,
1000:1, or higher. For the two equal-SNR uncorrelated arrivals within a Raleigh beamwidth, the
most stringent beamwidth separation is Ofracbw = 1/40 = 0.025. This is for the three-element
half-wavelength spacing case with only 1' separation. For a ULA with three sensors and fractional
beamwidth Ofrcbw = 0.025, we read off from figure 4.1 the value of A2 = 1 - 101 = -30 dB, i.e.,
q = -27 dB. This can also be obtained from the approximate formula for closely spaced arrivals
as (7r/,10) 2 _ -L. Then we read from the curve for " = 0 dB in figure 5.29 with q in dB scale
the value of ' = 32 dB, or 1600:1, which is in agreement with the approximate formula for ' - 0A2  r
dB and r7 less than 0.10 (or -10 dB). Ottersten's results indicate that the degradation from using
unit weights is a five-time increase in the DOA standard deviation for the four sensors case and
a three-time increase for 10 sensors case.

The next uncorrclated scenario ,ised by Ottersten is for two unequal-SNR arrivals at 30 and
0 dB and spaced much farther apart at 00 and 150 from the broadside. For the most stringent

'Recall the discussions from section 4.1, the effective aperture of the approximating ULA should be a 24* arc
length instead of a 21" one.
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case of a three-element half-wavelength spacing ULA, this is about 40% fractional beamwidth.
From figure 4.3, we find from qj = 1 - 1012 vs fractional beamwidth for the three-element case the
value of 17 = -3 dB, roughly. This can also be obtained from the approximate formula for closely
spaced arrivals as 2(7r x 0.4)2 ; 0.48. Then, we read from the curve for ! = 0 dB in figure 5.33
with r1 in direct scale the value of i = 33 dB. This can also be obtained from the approximate
formula which is valid for 1 > 10 dB. So, the optimum weight ratio is about 2000:1.

7r2

In addition to the higher DOA standard deviation for using the unit weights, the much more
offending and eye-catching phenomenon [38, page 68] is the roller-coaster behavior of the standard
deviation curve as a function of the number of sensors. That is, the performance can degrade
by adding more sensors. This has been found by Ottersten [38, page 69] as highly correlated
with the sidelobe behavior of the ULA. Unlike the previous example where the two arrivals stay
within the mainlobe, here each arrival gets farther and farther into the sidelobes of the other
as more sensors are used. Our plot of the normalized inner product of the two steering vectors
agree with Ottersten's plot, but the -A' ratio curve has the maxima of 34.5 dB and exhibits onlyA20.5 dB ripples. Evidently, the asymptotic standard deviation expression is closely, if not exactly,
proportional to this normalized inner product. This is beyond the scope of our approach, where
only noise-free simplification is used.

As this defect of the unit weight has the close relation to the sidelobe phenomena, it probably
will not be prominent for a random array. However, the drawback of not using appropriate weight-
ing will be always present and manifested by the deterioration of the DOA standard deviation,
especially when high contrast is there.

6.3 Temporally Highly Correlated Arrivals

Ottersten provided two additional scenarios using equal-SNR partially but highly correlated ar-
rivals. This is contrasted to the either 0%- or 100%-correlated and equal-SNR arrivals typically
used by Cadzow. Here Ottersten's results are displayed as standard deviation versus SNR. We
need to know more about the multipath correlation beyond the magnitude, especially for the case
of equal SNRs where the variable involving the phase term has its most effect. During the
discussion of these scenarios, we will first tentatively assume that the phase difference between
the two equal-SNR multipaths as 900 and at the end adjust the eigenvalue ratio as we move to
the 0' correlation. For these highly correlated equipower arrivals, we have shown in section 5.3
that the effect on the eigenvalue ratio from changing the phase of the source correlation from 900
to 0' can be as high as a four-time or 6-dB increase.

Partial correlation of 99% yields a partial contribution to r/ of -17 dB, as 1 - 10.9912

2(1 - 10.991) = 0.02. The separation of two DOAs of 70 for a half-wavelength spacing ULA
corresponds roughly to O rac_bw = 0.2 beamwidth, which contributes about -9 dB stress as read
off from figure 4.3. This can also be obtained from the approximate formula for closely spaced
arrivals as 2(7r x 0.2)2 ; 0.12. Therefore, we have q = -26 dB because l is exactly multiplicative,
or additive in dB, in its two contributing factors, i.e., the multipath correlation part and the
closeness of the two steering vectors of the DOAs. So, the eigenvalue contrast here for the noise-
free scenario can be read from the curve for =0 dB in figure 5.29 using 71 = -26 dB as 32
dB or 1600:1. This is in agreement with the approximate formula valid for 11 = 0 dB and qj7r2

less than -10 dB. After the full 4-dB adjustment needed for the 0' temporal correlation, we have

S 36 dB or 4000:1. For moderate SNRs such as those about, 0 dB ones, the deterioration of
the Det-ML with respect to WSF starts to be noticeable as compared to the lack of distinction
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between the two at higher SNRs. This will be elaborated in the next paragraph. The degradation
of the unit weighting from that of the optimal one is more than one order of magnitude.

Partial correlation of 90% yields a partial contribution to 71 of -7 dB, as 1 - 10.9012 ; 2(1 -

10.901) = 0.2. The 40'-wide separation of two DOAs corresponds roughly to 1.3 beamwidth for
a four-sensor ULA which contributes about O-dB stress as shown from figure 4.7. So, the stress
is almost entirely from the partial correlation in the noise-free simplification. Therefore, we have

-7 dB or 0.2. This is in agreement with the approximate formula valid for El = 0 dB and
r7 less than -10 dB. The eigenvalue contrast here for the noise-free scenario can be read from the
curve for MI = 0 dB in figure 5.33 with 77 in direct scale using q = -7 dB as - = 13 dB or 200:1.
Ottersten used fairly low SNR but a large number of snapshots to distinguish the optimal weights
were used from the more intuitive MLE weights. For large SNRs, these two different choices of
weights do not have significantly different values. Therefore, this choice may not be important in
the HFDF scenarios. But as SNRs decrease, the magnitude of these two different sets of weights
depart, and the superiority of the optimal WSF algorithm over the Det-ML gets more pronounced.
Any preference of the optimal weights over the more intuitive MLE weights in the passive sonar
context is also questionable: to estimate the location of threshold signals, the number of signals
must be determined. None of these highly parametric direction-finding algorithms is suitable for
threshold signals.

6.4 Temporally 100%-Correlated Arrivals

So far, we have contrasted the Monte Carlo simulation comparison results of some of Cadzow's
0%-correlated scenarios and the comparison results of both the Monte Carlo simulation and
the asymptotic performance prediction of some Ottersten's uncorrelated and partially correlated
scenarios. We found it useful to assess the severity of their scenarios in terms of the noise-free
eigenvalue distribution for the two discrete arrivals.

However, such assessment fails when the small eigenvalue for the noise-free simplification
is zero, such as the case for the 100%-correlated arrival case which was discussed by Cadzow.
Secondly, there is some qualitative discrepancy between the asymptotic and simulation results for
the tradeoffs for high-SNR-scenario cases for the 100%-correlation cases between the Det-ML and
WSF methods. The asymptotic results cannot differentiate the performances of these two methods
by just judging from the weight expressions. Ottersten did not provide any asymptotic and
simulation results for the 100%-correlation cases. Whereas Cadzow's simulation results for some
100%-correlated arrival cases indicated that even the unit weighting signal eigenvector method
outperform the Det-ML method. For the single dominant eigenvector case, there is no weighting
involved at all, consequently there should be no difference between Cadzow's signal eigenvector
method and the WSF method.

As the asymptotic Det-ML for the high-SNR case approaches the CRLB, it is puzzling to see
how this bound for an unbiased estimator can be exceeded. Ottersten believes that apparently
this is because of the longer time it takes for the finite sample size bias to diminish in Det-ML than
WSF. Asked to provide some plausible explanations for the reason that the signal eigenvector type
methods outperform the Det-ML one, Ottersten thinks that this is because of the rank-reduction
advantage provided in using only the dominant eigenvectors. While the original rank-reduction
idea was suggested by Scharf and Tufts [47] and Scharf [48] in some different context, they did
point out the potential applications to DF.

We can see readily that Cadzow's results fitting two 100%-correlated signals with a single
eigenvector was not bad at all. Furthermore. when only one eigenvector is involved, the weighting
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of eigenvectors is irrelevant, i.e., the unweighted signal eigenvector and WSF methods are identical.
On the other hand, the results from using nonlinear least squares fit to the two unweighted
eigenvectors as reported in the two scenarios of the 90%- or 99%-correlated DOAs by Ottersten was
disastrous. Ottersten pointed out that in these cases, any consistent detection scheme will detect
two arrivals given enough samples. He also pointed that there is a discontinuity in performance
at 100% correlation for the unweighted signal eigenvector method, whereas WSF does not.

When a "dominant eigenvalue" becomes difficult to be distinguished from noise level ones,
one would intuitively choose not to use it. This is based on the conjecture that retaining this
marginally signal eigenvector and using the nonlinear least squares fit to it with an additional
linear combination of steering vectors corresponding to the unknown DOAs probably will do more
harm than help. Scharf and Tufts gave such practices more legitimate reasoning. Consequently,
the problem of deciding the optimal number of signal eigenvectors to be used in practice may not
be a simple one.



Chapter 7

Conclusions

After describing the scope of the report, chapter 1 starts with a survey of NB DF algorithms
for general sensor arrays in element space. This includes a taxonomy table, characterization and
asymptotic performance of the main algorithm categories, and the initialization procedure which
is the critical item of most high-resolution algorithms. Then, formulating guidelines desired for DF
scenario design are developed via the following items: too many parameters for a two-source DF
scenario for a given sensor array, simple map(s) to show relative positions of scenarios, yardsticks
for measuring stress of scenarios to direction-finding algorithms, and dominant eigenvalues chosen
as the key items. Next, we discuss eigenvalues for the noise-free covariance matrix of two discrete
sources through the following issues: treatment of this subject in Hudson's text, the original 6-
dimensional parameter space for a given sensor array under the noise-free assumption, compact
map(s) - another many-to-one reduction, and 3-d map with power ratio 1 as third coordinate.y Wr

2

Chapter 2 addresses the notion of stress to direction-finding algorithms and scenarics. First,
the three r--n sources for the signal eigenvalue spread or causes for small signal eigenvalues
are reviewed: high spatial and/or temporal correlation and/or high contrast of signal strength
between the two arrivals. Next, the eigenvalues in weighting expressions are discussed in three
categories: in noise subspace methods, in parametric signal subspace fitting methods, and in non-
parametric subspace adaptive beamforming. Then, the drawbacks of the oversimplifying stress-
measuring yardstick using condition numbers are mentioned: iifinite condition number for all
100%-correlated two arrivals, equal condition numbers corresponding to different CRLBs, CRLB
not appealing to intuitive expectation sometimes, and the redeeming value for condition number.
At the end, we explain the reasons why special treatment is given for equal-power arrivals and
the complementary value of direct-scale and dB-scale plots.

The analytical chapter 3 begins by reviewing the expressions of the eigenvalues of the quadratic
characteristic equations of the non-Hermitian product of the temporal- and spatial-correlation
matrix. The eigenvalues are normalized with respect to the product of the number of sensors
and the sensor level power of the weaker source ir2. The normalized large and small eigenvalues
expressions A, and A2 are reduced to forms depending only on the real triplet ( , ??, 1I.). Here,
is tb, power ratio between the strong and weak sources at the sensor level. The real pair ( , )
are defined in terms of the normalized temporal- and spatial-coefficients p and 0 respectively with
each constrained to a unit-disk through

77 = (I _ 102 1 - ),

= Re(pO*) = IpII1 cos(arg p - arg ).
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While the discussions of eigenvalues in this report are applicable to generic steering vectors, we
call 17 the phase-independent variable and the phase-dependent variable for convenience even
though such names were motivated by the special case of plane waves impinging onto pairwise
symmetric arrays. The phase-independent variable 17 depends only on the magnitude of p and 0.
The phase-dependent variable depends aio on the angular positions of p and 0. The mapping
from the complex pair (p, 0) to the real pair ( , 77) is many-to-one. The range of this mapping is
an isosceles-right-triangle-like region bounded on its left and right by two symmetric parabolas
meeting each other at 900 and down below by a straight baseline. We characterize this region
thoroughly with respect to the temporal and spatial coefficients of direction-finding scenarios.

Most of this report is devoted to characterizing the behavior of the eigenvalues and their ratio

as functions of the real triplet ( , 7,1). For convenience, we jointly summarize chapter 3,A 2 Ir2

which is mainly on the eigenvalue analysis, and chapter 5, which is mainly on the eigenvalue
ratio's display. After the expressions for the eigenvalue and their ratio -\- for the special cases
at the apex, the baseline, and the vertical axis were discussed, we thoroughly characterize the
special case of equal-strength drrivals and then the general case.

The special case of equal strength L = 0-dB arrivals share the following common features of

general -- power ratios: straight line contours for constant eigenvalue A, parabolic A slices forr 
2

constant phase-dependent variable , hyperbolic A slices for constant phase-independent variable
7, and parabolic contours for eigenvalue ratio '.

The special case of equal strength = 0-dB arrivals merits unique attention because of the7r2

following. There is an extra 6 dB for signal eigenvalue ratio . over the vertical axis = 0.
accounting for the presence of an infinite slope of A with respect to r) at the apex for the equal-
power arrival case. This is reflected in the following two approximations. When 11 > 10 dB, we
have A,-(n dB) ; (-)(in dB) - q(in dB).

When El -- 0 dB and /is less than 0.10 (or -10 dB), we have7r2

A( n dB) : -j(in dB) + 6.

Furthermore, for the special case of equal strength ai = 0 dB arrivals, the contours of the

eigenvalue ratio L = 1 form a one-parameter family of parabolas having their vertices colocated
"2

at ( ,7) = (-1,0), i.e., at the lower left corner of the isosceles-like triangle and their common
tangent the baseline 77 = 0. This family include the left boundary of the isosceles-like triangle
and the baseline. Because the contours of the eigenvalue ratio = l pass through the lower left
corner of the isosceles-like triangle, this corner is a point of discontinuity for the eigenvalue ratio
L for the special case of equal strength a = 0 dB. For example, the two eigenvalues are equal

A2 72
over the left parabolic boundary of the isosceles-right-triangle-like region. Furthermore, the two
equally dominant eigenvalues can go down to zero jointly so that the condition number stays as
unity throughout. That is, the condition numbers are the lowest possible there. However, both
eigenvalues tend to zero as r7 tends to zero, i.e., the baseline of the region.

As power ratio a increases from unit value, the variation of the large eigenvalue A1 is es-
sentially along the direction of the horizontal phase-dependent variable , and that the small

eigenvalue A2 essentially along the direction of the vertical phase-independent variable 77.
There is a four-time or 6-dB increase on the eigenvalue ratio u\ for highly correlated equipower

arrivals, both temporally and spatially, from changing the phase of the source correlation or the
angle difference between the two unit-disk vectors from 900 to 0'.
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The smaller eigenvalue A2 is independent of both the horizontal phase-dependent variable

and 1 near the baseline for large _1, but is a strong function of the vertical phase-independent
variable 77. The effect of !1 is essentially only felt by the large eigenvalue which is not sensitive

to whether the scenario's4,,r) coordinate is close to the baseline, i.e., whether the arrivals are
correlated or close to each other as far as its order of magnitude is concerned.

We also characterize Speiser's eigenvalue bounds specialized to the two-source scenario. These

bound expressions involve only the absolute magnitude of the two phasors on the two unit-disks,
i.e., only the radius but not the argument of the phasors. Interestingly enough, his two bounds
for the equipower case can be identified as the eigenvalue values at the two extreme ends of the
permissible phase-dependent variable c-interval on the constant phase-independent 77 hori,-ntal
line of the isosceles region with all expressions calculated from the magnitudes of p and 0 only. For
given r, the permissible .- interval attains its maximum width when the -interval extends from
the left to the right boundary parabola. The length of such maximum i-interval increases with
decreasing r, i.e., when the baseline is approached. The bounds for the small eigenvalue may be

loose when there is considerable variation in the order of magnitude of the small eigenvalue in the
phase-deendenrt variaHe C. 1-or large E the smaller eigenvalue A2 becomes more independent
of the horizontal phase-dependent variable ., the bounds will get tighter. That is, there is less

information loss by neglecting the phase-dependent variable .
Even though we assess only those algorithms applicable to gener' 1 sensor array configurations.

we still need to understand the results about plane waves impinging on a ULA, especially those
simulation results which could be expensive to duplicate for general arrays. Chapter 4 discusses
fractional beamwidth measurement for arrival separation and the smaller eigenvalue A2 's negligible
dependence on the number of elements N after using Ofrac-bw for the equipower uncorrelated case.

In chapter 6, we apply all the previously developed results to assess some scenarios used by

Cadzow and Ottersten. For temporally uncorrelated arrivals, we found that the \ ratios used by
Ottersten for his ULA scenarios ai'e typically in the area of 30 dB, i.e., 1000:1, or more, whereas
the mill-cross example used by Cadzow need an optimum weight ratio like 40:1. This explains
why different conclusions were drawn by them. The tradeoffs conducted by Cadzow were mainly
between his (unweighted) algorithm and Det-ML. The unweighted acgou;iii,, was outpeiuried
by Det-ML but not by much. Ottersten's results indicz.te that the degradation from using unit
weights is a 5-time increase in the DOA standard deviation for a 4-sensor case and a 3-time

increase for a 10-sensor case. However, in addition to the higher DOA standard deviation for
using the unity weights, the much more offending and eye-catching phenomenon is the roller-

coaster behavior of the standard deviation curve as a function of the number of sensors. That
is, the performance can degrade by throwing more sensors. This has been found by Ottersten as
highly correlated with the sidelobe behavior of the ULA.

We also commented on Ottersten's scenarios of temporally highly correlated arrivals and
Cadzow's scenarios of temporally 100%-correlated arrivals. For the latter case, the eigenvalue ratio

'= oc and the attempt to assess the severity of their scenarios via the noise-free eigenvalue ratio
for the two discrete arrivals failh. There is some quaiitative discrepancy between the asymptotic
and simulation results for the tradeoffs for high-SNR scenario cases for the 100% correlation
cases between the Det-ML and WSF methods. The asymptotic results cannot differentiate the
performances of these two methods just judging from the weight expressions. Ottersten did not
provide any asymptotic and simulation results for the 100% correlation cases. Whereas Cadzow's
simulation results for some 100%-correlated arrival cases indicated that even the unity weighting
signal eigenvector method outperform the Det-ML. Ottersten conjectured that the rank-reduction
idea by Scharf and Tufts may answer such differenc,
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Glossary

ABF Adaptive Beamforming
ASSP Acoustic, Speech, and Signal Processing Society
BW BeamWidth
CBF Conventional BeamForming
CRLB Cramer-Rao Lower-Bound
dB decibel
Det-ML Deterministic Maximum Likelihood
Det-MLE Deterministic Maximum Likelihood Estimation
DF Direction-Finding
DOA Directions Of Arrivals
EM Expectation-Maximization
EMVDR Enhanced Minimum Variance Beamforming
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
HFDF High-Frequency Direction-Finding
HFM Hyperbolic Frequency Modulated
IEEE The Institute of Electrical and Electronic Engineers, Inc.
LFM Linear Frequency Modulated
LPM Logarithmic Period Modulated
MD MultiDimensional
MFP Matched-Field Processing
MUSIC MUltiple SIgnal Classification
MVDR Minimum Variance Distortionless Response
NB NarrowBand
PCI Principal Component Inverse
SBR Signal to background ratio
SE Signal Eigenvector
SINR Signal to Irterference and Noise Ratio
SMI Sampled Matrix Inverse
SNR Signal-to-Noise Ratios
Stu-::L Stnfhastic Maximum Likelihood
Sto-MLE Stochastic Maximun 1 ik91ihood Estimation
ULA Uniform Line Array
WSF Weighted Subspace Fitting
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Appendix A

Hyperbola Derivation and
Characterization

In the general case discussion, we asserted without proof that for constant 77 slices the characteristic
equation can be rearranged to that of a hyperbola in A and as

A2 - 2,A - (1 + 7r)A + r = 0.

In this appendix, we will show that for each E- value, this equation describes a one-parameter 77
1r2

family of hyperbolas in A and , sharing common asymptotes.
Recall that in the discussion of the special case of 77 = 0, i.e., at the baseline, we have the

follewing relations:
A2 = 0,

7r2  ~ iA - +l1+ V- 2.

When changes from -1 to 0 to +1, A1 varies linearly in with the slope equal to 2VJ' from

(~ -, - 1 )2 to ( ----I +  1 ) to ( 1 -rT+ 1) 2.

These two straight lines for A1 and A2 will turn out to be the common asymptotes of each family
labeled with he particular ! value.

Following the usual treatment for reducing a general second-order plane curve to its canonical
form, we make the following coordinate transform

csO -sinO r +[hl r cosl-AsinO +h]
A sin 0 cos 0 A k sin 0 + A cos 0 + k

Substituting into the original equation, we have

(Esin 0 + A cos0 + k)2 - 2( cos 0 - A sin 0 + h)( sin 0 + A cos 0+k)

-(1 + -)(-sin8+ AcosO+ k) + -rl = 0.
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This can be rewritten into the following form as

CA2A 2 + CEAEA + C_.=2  + CAA + C- + c 0,

with

CA2 = cos2 0 + 2 r Lsin0cos0,
7r2

C-A = 2sin0cos 0- 2 V-I(cos2 9sin20),

7r2

C=2 = sin 2 0 -2 -r-sin0cos0,- V 72

CA = 2kcos6 - 2 (-ksinO 0- hcos0)- (1 + -)cos0,
F~r2 7r2

C= = 2ksine-2 (kcosP+hsinO)-(l+ -I)sin9,

c = k - 2V hk -(1* 4-)k -77/.

The rotation of coordinates is obtained by setting C-A = 0, i.e.,

tan 20 = 2 /--
V -7r2

Using this result, we rearrange CA2 and C=2 to see that what we are dealing with are indeed
hyperbolas:

sin 2 20 1
CA2 = (1 + cos 2 =)/2 + =1/2+ 2cos20 > 1,

sin 2 20 1
C=2 = (1 -cos20)/2- 2cos20 = 1/2 2cos20 < 0.

The translation of coordinates is obtained by setting CA = 0 and C= = 0, or

142-2 1LLL) -h(2 )= 1 + -,

-72 tan 0 7r27rV r2 2

k(2 + 2 tan0)- h(2 )=1+-.
V7r2sr 72s

Therefore k = 0, as tan0 - We also get h = - (1 + This means that the new

coordinate origin is at (-I(l + )/ J/i,0), i.e., the inter- ction of the two straight lines for A,2 /1 v r2

and A2 introduced during the discussion of the special case of ,7 = 0, i.e , at the baseline.
The remaining constant, c, is !q or (I tan 20)2 71.

The hyperbola in the new coordinate system has the following form

1 - 1/2)= 2  ( + 1/2)A "7
2cos2 2cos20 7r

The asymptotes have the slopes of
-C=2_ + 1 - cos20

CA2 1 + cos20-
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as expected.
The vertex distance from the new coordinate origin is 'Ev obtained from setting A = 0 as

2 1 2 2cos2O sin 20 1 1

2 l-cos20 1-cos20 2 tan20)7 - -tan207

in terms of 0, or
cos 20 7r1  . . . . - -

(-1 -c o 2  1 - 7(1 2 7r2

in terms of ."72

For given 0 or a. Hv is proportional to vf0. Tl,at is, the rate of increase of -v with respect

= is already half of_--, at q = 1. We note that the useful
vertices of these connected hyperbolas are over the boundary of the domain of interest only when

7L= 1. Withov' using many data points in the plotting and explicitly drawing the H axis, these7-
2

aspects may not be easily observed from the plots.
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